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Yield of forests in Ankara Regional Directory of Forestry in Turkey: 
comparison of regression and artificial neural network models based on 
statistical and biological behaviors

Ferhat Bolat, 
Ilker Ercanli, 
Alkan Günlü

Models of forest growth and yield provide important information on stand and
tree developments and the interactions of these developments with silvicul-
tural treatments. These models have been developed based on assumptions
such as independence of observations, uncorrelated error terms, and error
terms with constant variance; if these factors are absent, there may be prob-
lems  with  multicollinearity,  autocorrelation,  or  heteroscedasticity,  respec-
tively. These problems, which have several adverse effects on parameter esti-
mates, are statistical phenomena and must be avoided. In recent years, the ar-
tificial neural network (ANN) model, thanks to its superior features such as the
ability to make successful predictions and the absence of the requirement for
statistical assumptions, has been commonly used in forestry modeling. How-
ever, while goodness-of-fit measures were taken into consideration in the as-
sessment of ANN models, the control of the biological characteristics of model
predictions was ignored. In this study, variable-density yield models were de-
veloped using nonlinear regression and ANN techniques. These modeling tech-
niques were compared based on some goodness-of-fit measures and the princi-
ples of forest yield. The results showed that ANN models were more successful
in meeting expected biological patterns than regression models.
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Introduction
Regression  models  have  been  widely

used to maximize the explained variation
in forest measurements, such as individual
tree heights, individual tree diameter incre-
ments,  stand  basal  areas,  stand volumes,
and site indexes (Vanclay 1994). The relia-
bility of regression models depends on the
fulfillment  of  certain  statistical  assump-
tions (Zuur et al. 2010). Because forest in-
ventory  data  are  spatially  or  temporally
correlated (Fox et al.  2001), the statistical
assumptions are usually violated, and this
leads  to  biased  estimates  (West  et  al.
1984). To deal with the statistical problems,

the autoregressive modeling technique (Hi-
rigoyen et al. 2021) and mixed-effect mod-
eling technique (Karatepe et al. 2022) can
be used. However, some issues associated
with  these  modeling  techniques  have  re-
mained in question (Wang et al. 2008). For
instance,  it  may be problematic  to deter-
mine the parameter of random effects in a
mixed effects  model.  While  some studies
take goodness-of-fit measures into consid-
eration  (Ogana  et  al.  2020,  Raptis  et  al.
2021),  others consider the variance in the
estimated parameters (Fang & Bailey 2001,
Chenge 2021).

Artificial  neural  network  (ANN)  models
that are independent of statistical assump-
tions  have  been  widely  used  in  forestry
modeling.  In  earlier  studies,  ANN  models
were commonly employed to classify  for-
est  characteristics  (Kanellopoulos  et  al.
1993,  Foody et al. 1997), but recently they
have been used for both the classification
and  prediction  of  forest  characteristics
such  as  site  index (Lima  et  al.  2017)  and
stand basal area (Che et al. 2019).

Most researchers have paid attention to
goodness-of-fit statistics  in evaluating the
performance of ANN models (Ashraf et al.
2013,  Karatepe  et  al.  2022).  However,
growth  and  yield  predictions  for  forests
should also be evaluated based on the prin-
ciples of forest growth and yield (Weiskit-
tel  et al.  2011,  Seki  & Sakici  2022).  To our
knowledge,  no studies have explored the
success of ANN models in meeting biologi-

cal  expectations.  In  addition,  many  re-
searchers have provided very little informa-
tion about the setting of the network pa-
rameters. This study found that  when the
network parameters are not correctly set,
the predictions may be implausible from a
biological point of view even if the statisti-
cal scores are satisfactory.

The objectives of this study were to (i) de-
velop variable-density yield models using a
modified  Gompertz  model  and  an  ANN
model and (ii) compare their performances
based on goodness-of-fit statistics and the
principles of forest yield.

Materials and methods

Study area
In  this  study,  natural  monospecific  Cri-

mean  pine  stands  (Pinus  nigra Arnold.
subsp.  pallasiana Lamb.)  were  sampled.
They cover 44.8% (136,985.96 ha) of the to-
tal forest area in the Ankara Regional Direc-
tory  of  Forestry  in  Turkey  (GDF  2020).
Other common species in this area are vari-
ous oak species (Quercus cerris L.,  Quercus
infectoria Olivier,  Quercus  frainetto Ten.,
Quercus  robur  L.,  and  Quercus  petraea
Matt.) and the Scots pine (Pinus sylvestris
L.). Fig. 1 shows the sample plots and loca-
tion of the study area (33° 48′ 54″ - 37° 10′
06″ N; 39° 51′ 28″ - 41° 02′ 47″ E). The eleva-
tion of the study area varied between 239
m and 2541 m above mean sea level.  The
mean  annual  precipitation  and  mean  an-
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nual temperature were 393.2 mm and 11.9
°C, respectively (TSMS 2022).

Field measurements
Forest yield models should ideally be de-

veloped using data from permanent sam-
ple  plots.  However,  this  study  used  data
from  temporary  sample  plots  because
there were no permanent sample plots of
natural  monospecific Crimean pine stands
grown in the study area. The sample plots
inventoried were selected to be represen-
tative of  the range of site indexes,  stand
densities,  and  stand  ages.  A  total  of  180
sample  plots  were  randomly  chosen;  in
each,  a  circular  sampling  scheme  was

adopted  because  the  stands,  which  have
different stand densities in same site index
and have different ages in same site index
and  stand  density,  should  be  adequately
sampled.  If  the  number  of  samples  is  in-
sufficient in terms of site index, stand den-
sity,  and  age,  a  variable-stand  density
model may not meet the principles of for-
est yield. The area of the sample plots was
400,  600,  or  800  m2 according  to  the
crown closure of the plots. This study fol-
lowed  the  forest  management  guidelines
of  Turkey  in  determining the  area of  the
sample plots (Anonymous 2017). The mea-
surements in the sample plots were: (i) all
trees (≥ 4 cm in diameter at breast height)

were measured at 1.3 m above the ground;
(ii) the mean dominant height of the sam-
ple plots was calculated by averaging the
height of a certain number of trees corre-
sponding  to  the  100  tallest  trees  per
hectare;  then,  the site index value of the
sample plots was assigned using the site in-
dex table developed by Kalipsiz (1963); (iii)
the mean age of the sample plots was cal-
culated by averaging the age of the repre-
sentative  four  trees  considering  the  qua-
dratic mean diameter of the sample plots;
(iv)  to  establish  height-diameter  relation-
ships, the height of 10 trees having differ-
ent diameters at breast height in each sam-
ple plot was subsampled.

Tab. 1 shows the descriptive statistics of
the Crimean pine stands.

Regression-type variable-density yield 
models

The selection of a suitable yield function
is  essential  for  modeling  forest  develop-
ment. In forestry modeling, sigmoid func-
tions such as the Lundqvist-Korf, Richards,
and  Hossfeld  IV/McDill-Amateis  functions
have been widely used (Burkhart & Tomé
2012)  owing  to  their  flexible  forms.  They
produce the  most  appropriate  curves  for
any stand characteristic depending on the
site index and stand density. In this study,
the nonlinear variable-density yield models
(eqn. 1 to eqn. 6) were developed using the
Gompertz function, which is one of the Ri-
chards-type growth functions. To facilitate
the selection of starting values for the pa-
rameters, a solver tool was developed us-
ing  the  Generalized  Simulated  Annealing
package in the R environment (see Appen-
dix 1 in Supplementary material).

(1)

(2)

(3)

(4)

(5)

(6)

where G is the stand basal area (m2  ha-1),  V
is the stand volume (m3  ha-1), N is the num-
ber of trees (ha), A is the stand age (years),
SD is the stand density developed by Curtis
(1982),  SI is the site index (m), and  b1, …,
b3, and  a1, …,  a4 are the regression coeffi-
cients to be estimated.

In general, the variable-density yield mod-
els include SI, SD, and A as explanatory vari-
ables. In addition, the different explanatory
variables derived from  SI,  SD,  and  A (e.g.,
ln(SI), ln(SD), SI2) can be used to effectively
describe the development of the stands. In
this study, the prediction accuracy and the
principles of  forest  yield were considered
when deciding which variable to use. The
principles of forest yield considered in this
study are: (i) V and G increase with increas-
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Fig. 1 - The locations of study area and sample plots.

Tab. 1 - Descriptive statistics of Crimean pine stands studied in this study. (Dq): qua-
dratic mean diameter; (Hq): quadratic mean height; (A): age; (G): basal area; (N): stem
number;  (V):  volume  derived  from the  double  entry  tree  volume  equation  V  =
0.000202 · d1.602553 h0.969154 (Bolat 2021); (SI): site index; (SD): stand density (Curtis 1982).

Variables n Min Max Mean STD

Dq (cm) 180 2.00 56.30 27.14 10.89

Hq (m) 180 2.00 31.30 15.25 6.31

A (year) 180 13.50 161.67 74.11 32.87

G (m2 ha-1) 180 2.00 70.00 31.11 14.46

N (number ha-1) 180 137.50 1550.00 630.02 327.59

V (m3 ha-1) 180 7.00 921.67 323.79 216.15

SI (m) 180 10.00 34.00 21.16 6.68

SD 180 1.25 16.92 6.24 2.70
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1
SI

+a2
1
SD

+a3 ln(SI )+a4 ln(SD )

ln(N )=b1exp(−exp (b2−b3 b2(1/ A )))

ln(G )=b1exp(−exp(b2−b3 b2(1/ A )))

b2=a1(1/ SI )+a2(1/SD )+a3(SI )
2+a4(SD )2

b2=a1 ln(SI )+a2(1/SD )+a3(SI )
2+a4(SD)2

ln(V )=b1exp(−exp(b2−b3 b2(1 /A )))
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ing  SI,  but  N declines;  (ii)  V,  G,  and  N in-
crease with increasing  SD; (iii)  V and  G in-
crease with age; (iv)  N decreases with age
– this reduction is generally high in young
stands  due  to  strong  inter-tree  competi-
tion,  which leads  to  a  high probability  of
mortality (Meyer 1938); (v) V, B, and N may
develop in totally different ways depending
on the SI and SD in the managed forests –
the stands of the same age but in different
SIs and SDs may have a variable proportion
of yield; therefore, the S-shape of the yield
curves should be characterized by the poly-
morphic curves; (vi) the yield curves should
reach an asymptote (Gilabert et al. 2010) –
in the absence of an asymptote, the long-
term forecasts  of  the  stand variables  are
limited and may even be invalid.

Artificial neural network type variable-
density yield models

It  is  crucial  to  construct  an ANN  model
that is consistent with the principles of for-
est yield. If ANN’s parameters are not prop-
erly  managed,  the  produced  ANN  model
will  lead,  in  general,  to  unreasonable  re-
sults  (Hamidi  et  al.  2021).  Therefore,  this
study  developed  a  promising  modeling
framework to meet the principles of forest
yield.

An ANN model  includes  three fully  con-
nected layers: the input layer, hidden layer,
and output layer. Each input with an appro-
priate weight is taken into the input layer
without any data processing. The weighted
inputs with added bias values are passed to
the  hidden  layer  through  an  activation
function. Then, the resulting data are prop-
agated  forward  to  the  next  layer.  This
process is continued until the final output
has been produced.

The various types of activation functions
are selected according to the type of prob-
lem.  The  sigmoid  (i.e.,  logistic  and hyper-
bolic  tangent functions) and linear activa-
tion functions seem to be suitable for bio-
logical relationships in the hidden layer and
output  layer,  respectively  (Ozçelik  et  al.
2010,  Ashraf  et  al.  2013).  The  activation
functions  may  significantly  influence  the
performance of ANN models. The curve of
the logistic function may reach the asymp-
tote more quickly than the curve of the hy-
perbolic  tangent  function  at  higher  and
lower values (Dubey et al. 2021). This prop-
erty  of  the  logistic  sigmoid  function  may
cause the poor performance of ANN mod-
els due to the lack of sensitivity to variabil-
ity in the observed data. In this study, the
hyperbolic  tangent  and  linear  activation
functions were selected at the hidden layer
and output layer, respectively.

The inputs can be normalized to reduce
the  network  complexity  and improve the
robustness of the network against outliers
(Akilli & Hülya 2020). There are a number of
normalization  techniques,  such  as  the  z-
score, min-max, and sigmoid techniques. In
this  study,  the  min-max  technique  was
used to normalize inputs within a range of
-1 to +1 because the regularization function

used worked well with this type of normal-
ization (Foresee & Hagan 1997).

The  cross-validation  methods  such  as
leave-one-out  and  k-fold  cross-validation
techniques  are  effective  to  evaluate  the
performance  of  an  ANN  model  (Diaman-
topoulou & Ozçelik 2012). This study used
the  k-fold cross-validation method. In this
method, dataset is randomly divided into k
subsets having roughly equal size. The net-
work is trained using k-1 subsets and tested
using  a  single  subset.  This  process  is  re-
peated k times and calculated mean bias of
k subsets. When the bias is acceptable, the
training  will  be  stopped;  otherwise,  the
training will  continue until  achieving mini-
mum bias by simultaneously adjusting net-
work  parameters  and  k value.  This  study
also  considered  the  principles  of  forest
yield when deciding the best combination
of  network  parameters.  In  pre-analysis,  k
value was determined as five for this study.

Overfitting is a serious problem for ANN
models. If an ANN model having good fit in
the  training  dataset  fails  in  the  testing
dataset,  it  means  that  this  model  suffers
extensively  from  the  overfitting problem.
In  general,  this  problem  is  inevitable  for
ANN models having a small number of ob-
servations. On the other hand, if the num-
ber  of  parameters  in  an  ANN  model  is
higher  than  the  number  of  observations,
the ANN model does not adequately fit the
training dataset (Okut 2016). Because there
was  a  total  of  180 observations  for  each
stand variable in this study, simple neural
network models were implemented to pre-
vent overfitting. The method of determin-
ing the number of parameters in an ANN
model is shown in Fig. 2.

Another way to avoid overfitting is to se-
lect a suitable regularization training func-
tion,  such  as  the  Levenberg-Marquardt,

Bayesian, or variable learning rate gradient
descent function. In this study, the Bayes-
ian  function  was  chosen  because  it  can
capture  nonlinear  patterns  in  the  dataset
and produce an  S-shaped curve. This tech-
nique  is  also  quite  robust  for  overfitting
(Skudnik & Jevšenak 2022).

As with the regression approach, the ini-
tial  objective in an ANN model is to mini-
mize errors (eqn.  7).  This  study aimed to
minimize the mean of squared errors (also
called  the  objective  function).  Different
performance functions can be used as the
objective function, such as the mean abso-
lute error. In this study, the overall predic-
tion performance of the ANN models was
measured  by  the  mean  squared  error,
which is an indicator of the variation in the
errors (eqn. 7):

(7)

where Oi is the measured target values, Pi is
the predicted outputs, and n is the number
of  observations;  D is  a  training  data  set,
and M is a given network architecture.

In the Bayesian regularization technique,
an additional  term is  added to the objec-
tive function (eqn. 8), and this allows the
penalization of large weights and thereby
improves  the  generalization ability  of  the
ANN models (Foresee & Hagan 1997).

(8)

where  Ew is  the  sum  of  squared  weights
and  α and β are the parameters of objec-
tive function (also called the regularization
parameters).

The regularization parameters α and β are
adaptively  estimated  for  determining  the
best weights based on the Bayesian learn-
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Fig. 2 - A simple representation of ANN model with one hidden layer with two hidden
neurons (or nodes). This network includes a total of nine parameters (six weight and
three error parameters).
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ing rule and, hence, minimizing the regular-
ized objective function (eqn. 9):

where P (w |  D, α, β, M), P (w | β,  M) and P
(w | α, M) are the posterior probability, the
likelihood function, and the prior distribu-
tion  for  network  weights,  respectively.  P
(D |  α,  β,  M)  is a normalization factor  for
regularization parameters.

Choosing the best number of hidden neu-
rons, learning rate, and momentum factor
is important for enhancing the learning ca-
pacity of ANN models. When many hidden
neurons  are  used,  ANN  models  tend  to

memorize the problem but do not general-
ize  the  relationships  between  inputs  and
output.  Conversely,  if  only  a  few  hidden
neurons are used, ANN models do not re-
flect the patterns of the dataset (Ozçelik et
al.  2013).  While  the learning rate controls
the speed of learning, the momentum fac-
tor adjusts the current weight changes de-
pending on the previous weight changes.

In order to achieve the optimum number
of hidden neurons, learning rate, and mo-
mentum  value,  different  combinations  of
these factors were studied. In this trial-and-
error process, the number of hidden neu-
rons varied from 2 to 10 and the learning
rate and momentum factor varied from 0.1
to 0.9.

In this study, a total of 180 data items for
each stand variable were used to evaluate
the  performance of  the  ANN  models.  To
promote  the  performance  of  the  ANN
models and avoid overfitting, the five-fold
cross-validation  was  employed  using  the
entire dataset. The ANN models were con-
ceived using the MATLAB® software (Math-
Works 2020). Inputs and output were the
independent  and  dependent  variables  of
the  modified  Gompertz  function,  respec-
tively. Specifically, the inputs were:  [1/SI, 1/
SD,  SI2,  SD2,  and 1/A],  [ln(SI),  1/SD,  SI2,  SD2,
and 1/A], and [1/SI, 1/SD, ln(SI), ln(SD) and 1/
A] for  outputs  ln(G),  ln(V)  and  ln(N),  re-
spectively. Due to the small number of ob-
servations, the entire dataset was used for
training  the  ANN  models  in  this  study.
Therefore, the suitability of the ANN mod-
els  for  the  forest  yield  principles  was  as-
sessed using the artificially generated data,
which consisted of 150 years’ worth of sim-

ulation  data  divided  into  10-year  periods.
Each site index class (i.e., 12, 22, and 32 m)
included different stand density ratios (3, 5,
7, and 9; a stand density ratio of 9 means
that  the stand is  fully  stocked)  and ages.
After those new inputs were transformed
based on the inputs  of each ANN model,
the testing process began.

Model evaluation
The  statistical  evaluation  of  the  regres-

sion and ANN models was done using the
adjusted coefficient of determination (Radj

2,
eqn.  10)  and  root  mean  square  error
(RMSE, eqn. 11): 

(10)

(11)

where  Oi is  a measured value,  Pi is  a pre-
dicted value,  Omean is  a mean of  the mea-
sured values,  n  is the number of measure-
ments, and k is the number of coefficients
(parameters for the ANN model). In calcu-
lating the  Radj

2 and RMSE, the inputs ln(V),
ln(G), and ln(N) were back transformed to
make  the  statistical  evaluations  more
meaningful.

Results
The  goodness-of-fit  statistics,  estimated

coefficients, and t- and p-values of the non-
linear  regression  models  developed  for
each stand variable are shown in Tab. 2. All
of the coefficients estimated for SI, SD, and
A and the other explanatory variables de-
rived from SI, SD, and A were significant at
the 5% level.  The  Radj

2 values showed that
the amounts of the variations explained by
the  nonlinear  regression  models  (80%  to
96%) were satisfactory for G, V, and N.

The  goodness-of-fit  statistics  and  net-
work parameters of the best ANN models
for each stand variable are shown in Tab. 3.
The ANN models successfully described the
variations  in  G,  V,  and  N (the  Radj

2  value
ranged from 0.86 to 0.97). Therefore,  we
concluded that simple ANN models having
one hidden layer  with  a  small  number  of
hidden neurons (n<10) were adequate for
developing the variable-density yield mod-
els.

The  number  of  parameters  in  the  ANN
models (namely, the coefficients for the re-
gression models) was higher than for the
nonlinear  regression  models.  However,
both of them provided a similar statistical
performance for  G and  N. The ANN model
was  better  than  the  regression  model  in
predicting  V. Similarly, both of them yield-
ed polymorphic curves with a variable as-
ymptote (Fig. 3a-f,  Fig. 4a-f). These results
were compatible with the principles of for-
est yield. In addition, it appeared that the
ANN models were better for reflecting the
patterns of  G,  V, and N when relying on SI
and SD than the nonlinear regression mod-
els.
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Tab. 2 - Coefficient estimates (with t- and p-values, and standard error, SE) and good-
ness-of-fit  statistics  of  nonlinear  regression models developed for  predicting basal
area (G,  m2 ha-1),  volume (V,  m3 ha-1),  and the number of trees (N,  number ha-1)  of
Crimean pine stands.

Model Coefficient Estimate SE t-value p-value Radj
2 RMSE

G

b1 12.542 0.252 49.691 <0.0001

0.96 3.24

a1 1.926 0.18 10.726 <0.0001

a2 0.527 0.04 13.257 <0.0001

a3 0.00004 0 4.0689 <0.0001

a4 -0.0005 0 9.7649 <0.0001

b3 -21.846 2.471 8.8406 <0.0001

V

b1 19.732 0.808 24.412 <0.0001

0.8 108.15

a1 2.214 0.382 5.79 <0.0001

a2 0.129 0.054 2.4 <0.0001

a3 0.001 0.001 1.832 <0.0001

a4 -0.005 0.001 3.916 <0.0001

b3 -54.144 16.15 3.352 <0.0001

N

b1 9.565 0.427 22.388 <0.0001

0.85 144.18

a1 1.111 0.325 3.415 <0.0001

a2 0.662 0.165 4.004  <0.0001

a3 0.111 0.026 4.266 <0.0001

a4 0.34 0.058 5.857 <0.0001

b3 67.998  6.493 10.472 <0.0001

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

P (w|D,α ,β , M )=
P(D|w ,β ,M )P (w|α , M )

P (D|a ,β ,M )

Radj
2 =1−(1− ∑ i=1

n
(Oi−Pi)

2

∑i=1

n

(Oi−Omean)
2)( n−1

n+k−1 )

RMSE=√∑i=1

n
(Oi−Pi)

2

n−k

Tab.  3 -  The  number  of  parameters,
learning  rate,  momentum,  and  good-
ness-of-fit  statistics  of  ANN-based vari-
able-density yield models developed for
predicting  basal  area  (G,  m2 ha-1),  vol-
ume (V, m3 ha-1),  and stem number (N,
number ha-1) of Crimean pine stands.

Parameter G V N

Number of inputs 5 5 5

Number of net-
work parameters

57 36 50

Number of hidden 
neurons

8 5 7

Learning rate 0.1 0.1 0.1

Momentum value 0.5 0.5 0.5

Radj
2 0.97 0.97 0.86

RMSE 2.77 35.79 143.87
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Fig. 3 - Curves of nonlinear regression models for (a) G, basal area, (c) V, stand volume, and (e) N, number of trees, based on differ-
ent stand densities within same site index; (b) basal area, (d) stand volume, and (f) number of trees based on different site indexes
within same stand density.

Fig. 4 - Curves of ANN models for (a) G, basal area, (c) V, stand volume, and (e) N, number of trees, based on different stand densi-
ties within same site index; (b) basal area, (d) volume and (f) the number of trees based on different site indexes within same stand
density.
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According to  Fig.  5 and  Fig.  6,  the non-
constant variance in residuals of the nonlin-
ear  regression  models  was  more  promi-
nent  compared with  the  ANN  models.  In
addition, both of the models had similar re-
lationships  between  observed  and  pre-
dicted values (Fig.  5a,  Fig.  5c,  Fig.  5e and
Fig. 6a, Fig. 6c, Fig. 6e).

Discussion
In  most  studies  using  ANN  models,  the

findings have been discussed only with the
consideration of the goodness-of-fit statis-
tics  (Ashraf  et  al.  2013,  Karatepe  et  al.
2022). In forestry modeling, the principles
of forest  growth  and yield  are extremely
important  (Vanclay  &  Skovsgaard  1997).
Therefore,  this  study  took  into  account
both the goodness-of-fit statistics and the
principles  of  forest  yield  and  contrasted
the  ANN  models  accordingly.  The  ANN
models developed showed reasonable sta-
tistical and biological behaviors in predict-
ing G, V, and N. With this in mind, this study
presented  important  findings  for  ANN
modeling in forestry.

The Gompertz function was modified to
develop the dynamic variable-density yield
models in this study.  The variables  SI and
SD were added to the growth-rate parame-
ter of the Gompertz function, thereby the
principles  of  forest  yield could be met.  A
similar approach was used in the study of
Temesgen et al. (2014). In their study, the
Chapman-Richards function was expanded
to incorporate stand and tree variables to
improve height predictions in forests with

multiple species and multiple layers.  Like-
wise,  Fortin et al. (2007) modified the von
Bertalanffy-Richards function to satisfy the
expected biological patterns of basal area
growth of red spruce and balsam fir after
logging treatments.

ANN  models  were  more  dynamic  than
nonlinear  regression models in  describing
patterns of G, V, and N. This result is attrib-
utable to the nonlinear transfer function in
the hidden layer of ANN models (Jensen et
al. 1999). Zhang et al. (2000) demonstrated
that ANN models facilitated the modeling
of  complex  nonlinear  relationships  be-
tween tree growth and climate variables.
Guan  et  al.  (1997) showed  that  the  ANN
model had great potential for constructing
a dynamic model requiring a higher-order
approximation.

Developing  a  dynamic  nonlinear  regres-
sion model can be difficult due to the diffi-
culty in determining the starting values of
the  parameters  (Fekedulegn  et  al.  1999).
Developing an ANN model  with many ex-
planatory variables can be easier than de-
veloping a nonlinear regression model. On
the other hand, the correlations among ex-
planatory variables may affect the sign and
magnitude of the regression parameters to
be estimated and may result in unreason-
able  statistical  and  biological  behaviors.
Similarly, some irrelevant explanatory vari-
ables (inputs)  may decrease the accuracy
of  ANN  models  or  may  induce  small
changes in their performance (Maier et al.
1998). Therefore, the selection of the vari-

ables  is  essential  for  both  modeling  ap-
proaches.

The accuracy of ANN models is highly de-
pendent on the  selection  of  network  pa-
rameters  (Maier  &  Dandy  2000).  The
choice  of  network  parameters  was  re-
ported in only a few studies. In the study of
Liu & Zhang (2005), while the learning rate
was 0.3, the momentum was 0.7 in predict-
ing the lumber volume, lumber value, chip
volume,  and  total  product  value.  In  the
study of  Ozçelik et al. (2013), the learning
rate was 0.1 and the momentum was 0.3 in
predicting the total tree heights.  Castaño-
Santamaría et al. (2013) found that the best
values  for  the  learning  rate  and  the  mo-
mentum were 0.1 and 0.2, respectively, in
predicting tree heights. Ozçelik et al. (2014)
found that the optimal values for the learn-
ing rate and the momentum were 0.1 and
0.3,  respectively,  in  predicting  tree  stem
volumes. In our study, the optimal learning
rate and momentum were 0.1 and 0.5, re-
spectively, in predicting the G, V, and N.

This study demonstrated that simple ANN
models  with one hidden layer and only a
few hidden neurons (n<10) were adequate
for accurately predicting the  G,  V,  and  N.
These findings  are compatible with the re-
sults  of  Castaño-Santamaría  et  al.  (2013),
Liu  &  Zhang  (2005),  and  Ozçelik  et  al.
(2013), who reported that one hidden layer
and  a  small  number  of  hidden  neurons
were adequate for the prediction of forest
attributes.
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Fig. 5 - Scatterplots of predicted  vs. observed values (a: basal
area, G; c: stand volume, V; e: number of trees, N) and residuals
vs. predicted values (b:  G; d:  V;  f:  N) for nonlinear regression
models.

Fig. 6 - Scatterplots of predicted  vs. observed values (a: basal
area, G; c: stand volume, V; e: the number of trees, N) and resid-
uals vs. predicted values (b: G; d: V; f: N) for ANN models.
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Conclusions
Many  researchers  paid  attention  to  the

goodness-of-fit statistics in evaluating ANN
models  and  comparing  ANN  models  with
other modeling approaches. However, the
biological rationales are often overlooked.
This study showed that two different mod-
eling approaches  with similar  error statis-
tics may provide different curves depend-
ing on the SI and SD for G, V, and N. There-
fore, it is recommended that both statisti-
cal and biological behaviors should be ex-
amined  together  when  comparing  differ-
ent modeling approaches. In addition,  we
analyzed  how  the  choice  of  network  pa-
rameters affected the performance of ANN
models. The best results were achieved us-
ing ANN models with one hidden layer and
only a  few hidden neurons.  The Bayesian
regularization  training  function  with  the
tangent-sigmoid and linear activation func-
tions  at  the  hidden layer  and the  output
layer, respectively, was suitable for meet-
ing the principles of forest yield. The best
learning rate and momentum were 0.1 and
0.5, respectively, for the prediction of G, V,
and  N. The knowledge obtained from this
study can be a guideline for future similar
studies.
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