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Predictive capacity of nine algorithms and an ensemble model to 
determine the geographic distribution of tree species

Juan Carlos Montoya-Jiménez (1), 
José René Valdez-Lazalde (1), 
Gregorio Ángeles-Perez (1), 
Héctor Manuel de los Santos-
Posadas (1), 
Gustavo Cruz-Cárdenas (2)

The different models that predict the distribution of species are a useful tool
for the evaluation and monitoring of forest resources as they facilitate the
planning of their management in a changing climate environment. Recently, a
significant number of algorithms have been proposed for this purpose, making
it difficult to select the most appropriate to use. The evaluation of perfor-
mance and predictive stability of these models can elucidate this problem. Dis-
tribution data of 17 pine species with high economic importance for Mexico
were collected and distribution models were carried out.  We carried out a
pre-modeling design to select the prediction variables (climatic, edaphic and
topographic), after which nine algorithms and an ensemble model were con-
trasted against one another. The true skill statistic (TSS) and the area under
the curve (AUC)  were used  to evaluate the predictive  performance of the
models, and the coefficient of variation of the predictions was used to evalu-
ate their stability. The number of predictive variables in the final models fluc-
tuated from 6 to 12; the mean diurnal range and the maximum temperature of
warmest month were included in the models for most species. Random forests,
the ensemble model, generalized additive models and MaxEnt were the ones
that best described the distribution of the species (AUC> 0.92 and TSS> 0.72);
the  opposite  was  found in  Bioclim and  Domain  (AUC<0.75  and  <0.82;  and
TSS<0.5 and <0.55). Support vector machine, Mahalanobis distance, general-
ized linear models and boosted regression trees obtained intermediate set-
tings. The coefficient of variation indicated that Bioclim, Domain and Support
vector machine have low predictive stability (CV>0.055); on the contrary, Max-
ent and the ensemble model attained high predictive stability (CV<0.015). The
ensemble model obtained greater performance and predictive stability in the
predictions  of  the  distribution of  the  17 species  of  pines.  The differences
found in performance and predictive stability of the algorithms suggest that
the ensemble model has the potential to model the distribution of tree spe-
cies.

Keywords:  TSS,  AUC,  BRT,  SVM,  MaxEnt,  Random  Forests,  GAM,  Ensemble
Model

Introduction
Species  distribution  models  (SDM)  are

statistical methods or machine learning al-
gorithms  used  to  model  and  map  past,
present or future species distributions (El-
ith  et  al.  2006,  Pecchi  et  al.  2019).  These
tasks  are  relevant  for  forest  resources
management (Pecchi  et  al.  2020)  and for

forest  conservation  planning  (Ramos-Do-
rantes et al. 2017).

The SDM are performed by three differ-
ent  approaches:  correlative,  mechanistic,
and  process-oriented  or  hybrid  (Peterson
et al. 2012). The correlative approach is the
most widely used due to the availability of
databases  of  the  presence  records  of  a

species,  climatic  and meteorological  data,
and computerized algorithms that facilitate
the  modeling  process  (Hijmans  &  Elith
2017). Additionally, the models with a cor-
relative approach are the simplest to apply,
since  they  rely  on  the  statistical  relation-
ship that exists between the presence re-
cords of the species and the data that de-
scribes  the environment they inhabit  (Pe-
terson et al. 2012). Recent studies showed
that the choice of the algorithm used for
SDM is a source of variation in the process
of  the  spatial  prediction  of  the  species,
which  can  significantly  affect  the  perfor-
mance  of  the  model  (Jarnevich  &  Young
2019, Pecchi et al. 2020). This is the reason
why the current trend is to examine multi-
ple algorithms and select the most appro-
priate for  their  application,  in accordance
with the objective of each research (Ren-
Yan et al. 2014, Shabani et al. 2016).

The  algorithms  available  to  implement
SDM under the correlative approach are di-
verse (Tab. 1), all of which present advan-
tages and disadvantages in its application,
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performance  and  predictive  stability  (Pe-
terson et al. 2012). In SDM, an algorithm is
rarely identified as the best one in a consis-
tent  manner  (Ren-Yan  et  al.  2014),  since
they are sensitive to the data and mathe-
matical functions used to describe the dis-
tribution of the species based on environ-
mental  variables.  In  order  to  reduce  this
variation,  it  has  been  suggested  to  com-
bine the predictions of different algorithms
in  a  composite  called  ensemble  model
(Araújo & New 2007). The way to build the
ensemble model  can be through the me-
dian,  the  mean,  and  the  weighted  mean
based  on  the  predictive  performance  of
the  individual  algorithms,  measuring  the
performance  based  on  statistics  such  as
the  area  under  the  curve  (AUC)  and  the
true  skill  statistic  (TSS  – Araújo  &  New
2007,  Hao et  al.  2019).  Recent studies re-
port  that  evaluating  ensemble  models
from two or more algorithms is a viable al-
ternative to improve prediction and conse-
quently  reduce  uncertainty  (Pecchi  et  al.
2020).

The  genus  Pinus has  a  notable  impor-
tance in  the  Mexican  economy  by  con-
tributing around 6.3 million cubic meters of
wood per year (CONAFOR 2019). According
to the Biometric System for Planning Sus-
tainable Forest Management (SIBIFOR), 17

pine species contribute with about 70% of
the timber production in the country (Var-
gas-Larreta  et  al.  2017);  these  17  species
were incorporated to our SDM modelling
analysis.

Recently, efforts have been made in Mex-
ico to model the distribution areas of some
pine species by means of the MaxEnt algo-
rithm  (Aceves-Rangel  et  al.  2018,  García-
Aranda et  al.  2018,  Reynoso Santos  et  al.
2018,  Manzanilla-Quiñones  et  al.  2019).
However,  it  has  not  been  considered  to
evaluate  the  performance  and  predictive
stability  of  other  algorithms,  which could
mean  that  the  most  robust  and  reliable
models designed to carry out this task are
not  being  used.  Consequently,  forest  re-
source managers would be dispensing with
the best information in their process of de-
cision-making.  Therefore,  the objective of
this  study  was  to  evaluate  the  perfor-
mance and predictive stability of nine algo-
rithms and an ensemble model  in defining
the  geographic  distribution  area  of  17
coniferous species with high economic im-
portance in Mexico.

Materials and methods

Species and presence records
The  seventeen  pine  species  that  most

contribute to timber production in Mexico
(up to 70 %) were considered in the study:
Pinus arizonica (P.ar),  P.  ayacahuite (P.ay),
P. cembroides (P.ce), P. devoniana (P.de), P.
douglasiana (P.do), P. durangensis (P.du), P.
hartwegii (P.ha),  P. herrerae (P.he),  P. leio-
phylla (P.le),  P.  maximinoi (P.ma),  P.  mon-
tezumae (P.mo),  P. oocarpa (P.oo),  P. pat-
ula (P.pa), P. pseudostrobus (P.ps), P. strob-
iformis (P.st),  P.  strobus var.  chiapensis
(P.sc),  and  P.  teocote  (P.te).  A  database
containing 17,908 presence records for the
17 species (Tab. 2) was assembled with in-
formation  from  the  National  Forest  and
Soil  Inventory  of  Mexico  (INFyS  2009-
2014),  the Global  Biodiversity  Information
Facility (GBIF 2020), the National Commis-
sion for the Knowledge and Use of the Bio-
diversity  (CONABIO  2020).  We  used  two
land use  and  vegetation  type  maps  scale
1:250,000 corresponding to years 1985 and
2014 (INEGI’s series 1 and 6 respectively  –
INE/INEGI 1997, INEGI 2016) to eliminate re-
peated,  incomplete  and  poorly  georefer-
enced data. For species distributed beyond
the  limits  of  Mexico,  we use  of  a  global
land cover  map (Hansen et  al.  2000).  For
coarse  scale  presence  record  validation,
we used the Atlas of the World’s Conifers
(Farjon & Filer 2013), but the available sci-
entific  literature  (Ramos-Dorantes  et  al.
2017,  Aceves-Rangel  et  al.  2018,  García-
Aranda et  al.  2018,  Reynoso Santos  et  al.
2018, Manzanilla-Quiñones et al. 2019) was
used  for  finer  scale  validation  of  the  re-
cords  collected  for  each  species  so  that
they coincided with their reported natural
distribution.

The databases for each species were en-
tered  into  the  Diva-GIS  program  ver.  7.5
(Hijmans et al.  2012).  Through jacknife re-
sampling (Chapman 2005) atypical climatic
values  were excluded,  all  of  which might
be  related  to  poor  georeferencing  or  to
problems in the taxonomic identification of
the  species.  For  all  species,  records  that
contained  three  or  more  atypical  climate
conditions were excluded from the analysis
(Chapman 2005). Finally, the density of the
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Tab. 1 - Evaluated algorithms to build the spatial distribution models of 17 species of pines. *For these analyzes, for each evaluated
species we selected 20.000 pseudo-absences at random.

Statistical approach –
General description

Data Algorithm Reference

Distance – they are considered climate envelope 
algorithms and calculate the similarity that exists 
between candidate pixels with respect to the 
selected presence records.

Presence

Bioclim (BIO) Nix (1986)

Domain (DOM) Carpenter et al. (1993)

Mahalanobis distance (MD) Etherington (2019)

Regression – they are algorithms that model the 
median of a response variable regarding prediction 
variables; they use the Logit Link Function to relate 
the expected value of the response variable with 
included predictors.

Presence/ absence*
Generalized linear model (GLM)

Guisan et al. (2002)

General additive models (GAM)

Machine Learning – within SDM they are algorithms 
that focus on classification. Their main objective is 
to automatically improve the classification of 
training data until finally obtaining a better model.

Presence/ absence*

Sector-vector machine (SVM) Betancourt (2005)

Boosted regression trees (BRT) Hijmans & Elith (2017)

Random forests (RF) Mi et al. (2017)

Presence/ Background* MaxEnt (MAX) Phillips et al. (2006)iF
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Tab. 2 - Number of occurrences by species used to estimate the distribution area of 17
species of pines. (NP): Number of presences.

Species NP Species NP

Pinus arizonica (P.ar) 1165 Pinus maximinoi (P.ma) 370

Pinus ayacahuite (P.ay) 234 Pinus montezumae (P.mo) 560

Pinus cembroides (P.ce) 1846 Pinus oocarpa (P.ooc) 2182

Pinus devoniana (P.de) 540 Pinus patula (P.pa) 479

Pinus douglasiana (P.do) 394 Pinus pseudostrobus (P.ps) 1667

Pinus durangensis (P.du) 1426 Pinus strobiformis (P.st) 1430

Pinus hartwegii (P.ha) 448 Pinus strobus var. chiapensis (P.sc) 117

Pinus herrerae (P.he) 803 Pinus teocote (P.te) 1786

Pinus leiophylla (P.le) 2461 - -
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presence  records  was  reduced  to  one
record  per  km2 to  reduce  the  effects  of
sampling  bias  and  thus  avoid  over-fitting
the models due to redundant environmen-
tal information (Hijmans & Elith 2017).

Selection of environmental variables 
and calibration area

The environmental variables that charac-
terize  the  areas  where  the  species  pres-
ence  were  recorded  were  obtained  from
the WorldClim version 2 repository, with an
approximate resolution of 1 km2 (Fick & Hij-
mans  2017).  From  19  available  variables,
isothermality  (Bio3),  temperature  season-
ality  (Bio4),  temperature  annual  range
(Bio7) and precipitation seasonality (Bio15)
were eliminated, since biologically they are
difficult to interpret.  Escobar  et  al.  (2014)
reported  that  the  mean  temperature  of
wettest quarter (Bio8), mean temperature
of  driest  quarter  (Bio9),  precipitation  of
warmest quarter (Bio 18) and precipitation
of coldest quarter (Bio19) show discontinu-
ities  between  neighboring  pixels,  and
therefore  these  variables  were  also  ex-
cluded  (Tab.  3).  We  incorporated  to  the
analysis  edaphic  variables available in the
SoilGrids database (Hengl et al. 2017), since
it has been shown that the combined use
of edaphic and climatic  variables improve
the precision of predictions, compared to
those constructed only with  climatic  vari-
ables (Velazco et al. 2017). We also consid-
ered topographic variables in the modeling
process (altitude, slope, diurnal anisotropic
heat,  Convergence  index,  Terrain  rugged-
ness  index,  Topographic  wetness  index)
derived  from  the  digital  elevation  model
available  at  the  WorldClim  website  in
SAGA-GIS v.  7.5.0 (Conrad et  al.  2015),  as
they were formerly identified important for
modeling the spatial  distribution of  some
pine species analyzed in our study (Ramos-
Dorantes et al. 2017).

The selection of  the environmental  vari-
ables to be used in SDM is an important as-
pect  in  the  modeling  process,  since  they
have a significant effect on the predictive
performance of  the models  (Cobos et  al.
2019). In this study, for each species a pre-
modeling exercise was  initially  performed
to identify the five most important predic-
tor variables according to each tested algo-
rithm. We fitted models iteratively (includ-
ing or excluding each variable) and moni-
tored  the  area  under  the  curve  (AUC)
statistic value obtained to identify the five
variables with the greatest contribution to
predict  the  potential  distribution  area  of
the species. Variables that were identified
in the top five by more than one algorithm
were added only once to conform a set of
likely  predictor  variables  for  a  given  pine
species. We ended up with preliminary sets
of  12-19 predictor  variables  depending on
the pine species analyzed. We also imple-
mented a variance inflation factor analysis
(VIF <5 – Cobos et al. 2019) to identify and
minimize the presence of multicollinearity
in  the  subset  of  relevant  predictor  vari-

ables.  The  final  number  of  uncorrelated
predictive variables was different for each
species  (Tab.  S2  in  Supplementary  mate-
rial).

In the process of building species distribu-
tion models, the definition of the accessi-
ble area for the species is a critical factor
for the result of the calibration, evaluation
and comparison of the model (Peterson et
al. 2012). In this study, the accessible area
for each species was made from the terres-
trial  ecoregions  of  the world  that  delimit
the  distribution  of  each  of  the  species,
since they are zones with common physio-
graphic, biological and historical character-
istics. In this sense, climatological, geologi-
cal and edaphological conditions are simi-
lar, and they are of great importance in the
distribution  of  species  and  communities
(Farjon & Filer 2013).

Spatial modeling process: algorithms 
and predictions

The  modeling  process  for  each  species
was carried out with the following configu-
ration:  20,000 randomly  pseudo-absences
were generated and the evaluation of the
models was  executed with  the bootstrap
resampling  method  with  10  repetitions

(Naimi & Araújo 2016), since using 70% and
30% of the presence data for the calibration
and  evaluation  of  the  model  respectively
can  overestimate  the  evaluation  parame-
ters of the models (Radosavljevic & Ander-
son  2014).  The  SDM  was  performed  for
each of the species of interest using nine
algorithms (Tab. 1) and an ensemble mod-
el,  which  was  built  from  the  weighted
arithmetic  mean  of  the  true  skill  statistic
(TSS)  values  obtained for  the three  algo-
rithms with the highest predictive perfor-
mance (Marmion et al. 2009).

The performance of  the  algorithms was
evaluated  through  the  TSS  (Hao  et  al.
2020) and the AUC (Pecchi et al. 2020). In
order  to  calculate  the  TSS,  binary  predic-
tions  (presence/absence)  are  required,
which is  the reason we applied the cut-off
threshold criterion to generate continuous
predictions; this maximizes the sum of sen-
sitivity  and  specificity,  since  it  has  been
shown to be useful  in modeling methods
that employ only presence data (Manzanil-
la-Quiñones et  al.  2019).  To denote differ-
ences  between  algorithms  we performed
the non-parametric  Kruskall-Wallis  test  on
the AUC values. Then we grouped the algo-
rithms  using  the  Fisher’s  least  significant
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Tab. 3 - Description of climatic, edaphic and topographic variables employed to build
the spatial distribution models of 17 species of pines.

Category Variable Key

Climatic Annual mean temperature (°C) bio1

Mean diurnal range (°C) bio 2

Maximum temperature of warmest month (°C) bio 5

Minimum temperature of coldest month (°C) bio 6

Mean temperature of warmest quarter (°C) bio10

Mean temperature of coldest quarter (°C) bio11

Annual precipitation (mm) bio12

Precipitation of wettest month (mm) bio13

Precipitation of driest month (mm) bio14

Precipitation of wettest quarter (mm) bio16

Precipitation of driest quarter (mm) bio17

Soil 
proprieties

Sand (g kg-1) sa

Cation exchange capacity (mmol(c) kg-1) cec

Clay content (g kg-1) clc

Organic carbon soil (dg kg-1) ocs

Bulk density (cg cm-3) bd

Organic carbon density (g dm-3) ocd

Silt (g kg-1) sil

Nitrogen (cg kg-1) nit

pH water (pH·100) pH

Soil organic carbon stock (t ha-1) socs

Topographic Altitude (m a.s.l.) alt

Slope (°) slo

Diurnal anisotropic heat dah

Convergence index ci

Terrain ruggedness index (m) tri

Topographic wetness index twi
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difference criterion after correcting the  p-
value through the Bonferroni  method.  To
compare the predictive stability  of the al-
gorithms  including  the  ensemble  model,
we followed the methodology reported by
Ren-Yan et al. (2014). For each species and
each  algorithm,  we  calculated  the  coeffi-
cient  of  variation  (CV =  σx/x ̄)  for  the TSS
statistic  values  obtained from the model-
ing process through bootstrap resampling
with 10 repetitions. A scatter plot was gen-
erated to  show the results,  including the
mean and the standard error of the CV (y-
axis) and TSS (x-axis) of the 17 species. The
predictions of the best algorithm found for
each  species  were  applied  to  the  cutoff
threshold that maximizes the sum of sensi-
tivity  and  specificity,  and  were  projected
on binary maps (suitable-not suitable).

Software
The  pre-modeling  and  modeling  pro-

cesses  were carried  out  using the “sdm”
package  (Naimi  &  Araújo  2016),  whereas
for  secondary  information  processes  we
used  “raster”  packages  (Hijmans  et  al.
2020), “ntbox” (Osorio-Olvera et al. 2020),
“rgdal”  (Bivand  et  al.  2020),  all  of  which
were  implemented  in  the  R  software  (R
Core Team 2020).

Results

Presence records and relevant 
environmental variables

The  models  were  fitted  with  different
number of presence records. In this regard,
P.sc and P.le were the species with the low-
est  (117)  and  highest  (2461)  number  of

records;  the  models  for  the  rest  of  the
species  were  adjusted  with  a  number  of
records that ranged between 234 and 2182
(Tab. 2). The premodeling and VIF analyses
identified the important variables (Tab. S1
in  Supplementary  material)  and  with  low
collinearity  (Tab.  S2)  to  fit  the models  of
the 17 species of pines. The number of vari-
ables used for the final models fluctuated
between 6 variables for  P.ar and up to 12
variables for  P.de.  Variables bio2 and bio5
were included as predictors in a large num-
ber of the SDM (Tab. 4).  In contrast,  vari-
ables bio6, bio12,  bio16 and socs were in-
cluded in very few of the generated mod-
els.
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Tab. 4 - Important and uncorrelated variables used in the spatial distribution models of 17 pine species in Mexico. (bio1): annual
mean temperature (°C); (bio2): mean diurnal range (°C); (bio5): maximun temperature of warmest month (°C); (bio6): minimun tem -
perature of coldest month (°C); (bio10): mean temperature of warmest quarter (°C); (bio11): mean temperature of coldest quarter
(°C); (bio12): annual precipitation (mm); (bio13): precipitation of wettest month (mm); (bio14): precipitation of driest month (mm);
(bio16):  precipitation  of  wettest  quarter  (mm);  (bio17):  precipitation  of  driest  quarter  (mm);  (sa):  sand  (g  kg -1);  (cec):  cation
exchange capacity (mmol (c) kg -1); (clc): clay content (g kg -1); (ocs): organic carbon soil (dg kg-1); (bd): bulk density (cg cm -3); (ocd):
organic carbon density (g dm-3); (sil): silt (g kg-1); (nit): nitrogen (cg kg-1); (pH): pH water (pH·100); (socs): soil organic carbon stock (t
ha-1); (alt): altitude (m); (slo): slope (°); (dah): diurnal anisotropic heat; (ci): convergence index; (tri): terrain ruggedness index (m);
(twi): topographic wetness index.
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Fig. 1 - True skill statistic (TSS) and area
under the curve (AUC) of nine algorithms

and ensemble model for predicting the geo-
graphic range of 17 pine species. (BIO): Bio-
clim; (DOM): Domain; (SVM): Support Vec-
tor Machine; (MD): Mahalanobis distance;

(GLM): Generalized linear models; (BRT):
Boosted regression trees; (GAM): General-

ized additive models; (MAX): MaxEnt; (RF):
Random forests; (EM): Ensemble model.

Fig. 2 - Distribution area predicted by nine
algorithms and ensemble model for the

modeling of 17 pine species in Mexico. (Bio):
Bioclim; (BRT): Boosted regression trees;

(EM): Ensemble model; (MD): Mahalanobis
distance; (DOM): Domain; (GAM): General-

ized additive models; (GLM): Generalized
linear models; (MAX): MaxEnt; (RF): Ran-

dom forests; (SVM): support vector
machine.
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Predictive performance of the 
algorithms

The evaluating statistics of the predictive
performance of the algorithms as well  as
the ensemble model obtained different val-
ues. Six of the analyzed algorithms gener-
ated low values in the AUC (<0.90) and TSS
(<0.70) statistics with respect to the rest of
the algorithms (Fig. 1). GAM, MAX, RF and
the ensemble model  attained the highest
values in AUC and TSS (>0.90 and >0.70, re-
spectively). The algorithms with the lowest
predictive  performance  were  BIO  and
DOM,  which  obtained  low  values  in  AUC
(<0.75 and <0.82) and TSS (<0.5 and <0.55).
The SVM, DMAH, GLM and BRT algorithms
obtained intermediate values  for both sta-
tistics.  The  non-parametric  Kruskall-Wallis
test  denoted  that  the  performance  be-
tween the algorithms was statistically dif-
ferent; the post-hoc test allowed us to rank
the performance of  the algorithms in de-
scending order, and the assembled model
obtained the best performance (Fig. S3a in
Supplementary  material).  In contrast,  BIO
obtained  the  lowest  performance  (Fig.
S3h), while MAX and GAM obtained a simi-
lar performance (Fig. S3c).

Predictions and stability of the 
algorithms

The  nine  algorithms  and  the  ensemble
model differed in predicting spatial ranges
for all species. For most species DOM pre-
dicted  a  larger  distribution  area  (Fig.  2).
Conversely, BIO and SVM predicted lesser
areas  of  distribution  for  all  species.  The
rest  of  the  algorithms  projected  surfaces
of  different  magnitude  with  a  relatively
lower difference than the previously men-
tioned algorithms. The algorithms with the
highest  performance (GAM, MAX, RF and
the ensemble model) predicted similar ar-

eas (Fig. 2). According to the performance,
the ensemble model better described the
distribution of  the pine species (Fig.  S1  in
Supplementary material).

The coefficient of variation indicated that
BIO, DOM and SVM have the lower stability
in predictions (CV >0.055); also, their error
bars  are  large,  indicating  that  CV  values
differ widely between species (Fig. 3). EM
and  MAX  obtained  smaller  variation  (CV
<0.015)  and  the  standard  error  was  low.
MD, GLM, BRT, GAM, and RF were the al-
gorithms that obtained a mean coefficient
of variation in the TSS statistic (CV ≥0.015
and CV <0.040 – Fig. 3).

Discussion

Environmental variables and final 
models

The  SDMs  with  their  correlative  algo-
rithms are the result of the projection of an
ecological niche model created in the envi-
ronmental  space  with  different  variables
(Soberón et al. 2017). It is clear that the se-
lection of variables is an important factor
in SDM and a set of important and uncorre-
lated variables can increase the predictive
power  and  reduce  the  complexity  of  the
model  (Cobos  et  al.  2019).  Watling  et  al.
(2012) found  that  selecting  uncorrelated
variables  with  biological  significance  did
not affect the predictive performance be-
tween the models; however, they did not
find the same in spatial predictions,  as us-
ing the RF algorithm with uncorrelated pre-
dictors,  more stable predictions  were ob-
tained.  In  the same study,  GLM provided
more unstable predictions, which indicates
that the algorithms are sensitive to the se-
lection of environmental variables that af-
fect the stability.

In our study, final models for all  species

used  different  combinations  of  variables,
although  it  was  observed  that  bio2  and
bio5  were  important  variables  for  many
species. This suggests that the distribution
of  the  pine  species  considered  in  the
present study is explained by variables re-
lated to temperature, which coincides with
Ramos-Dorantes et al. (2017), who report-
ed temperature as one of the most impor-
tant variables for the distribution of seven
pine species in Mexico. In another study by
Aceves-Rangel  et  al.  (2018),  altitude  was
the most important variable in the models
of 11 species of the same genus in Mexico.
Due to the fact that altitude has a high de-
gree  of  correlation (r=0.9)  with  tempera-
ture  in  an  indirect  manner,  it  can  be  in-
ferred that it is a  key variable in the distri-
bution of  pine  species.  The  two formerly
cited  studies  and  our  research  obtained
similar results due to the fact that the pine
species  of  Mexico  are distributed in  tem-
perate  habitats  where  temperature  is  an
important ecological factor (Farjon & Filer
2013).  In  this  context,  Perry  (1991) indi-
cated that  the pine species distributed in
Mexico and part of Central  America were
strongly influenced by climatic fluctuations
during the Paleogene period. This historical
fact indicates that temperature and precip-
itation are key factors in the current distri-
bution of pine trees and that the variables
selected in our models were adequate. It is
also worthwhile noting that for all the spe-
cies  analyzed,  variables  bio1,  bio10  and
bio15 were not considered in the model be-
cause  they  have  a  high  collinearity  with
other variables.

Predictive performance of algorithms
Testing  several  algorithms  to  perform

SDM helps to have a broader view of the
advantages and disadvantages of  the use
of  each  single  algorithm  (Jarnevich  &
Young 2019). Numerous studies on SDM of
Mexican pines (Aceves-Rangel et al.  2018,
García-Aranda et al. 2018,  Reynoso Santos
et al. 2018, Manzanilla-Quiñones et al. 2019)
only  used  the  MaxEnt  algorithm,  though
the prediction of the distribution areas can
be improved by employing an ensemble or
an RF model. In this study, we found that
all the analyzed algorithms obtained better
predictions than those obtained by chance
(Fig. 1). Nevertheless, it was observed that
RF and the ensemble model were superior
than the  rest  of  the  algorithms.  In  other
studies (Marmion et al. 2009, Ren-Yan et al.
2014, Pecchi et al. 2020), RF presented a su-
perior predictive performance with respect
to  other  algorithms,  which  is  consistent
with our results.  However,  it is important
to mention that RF does not always attains
the best prediction performance (Shabani
et al. 2016,  Marchi & Ducci 2018). Discrep-
ancies found between these studies can be
explained  by  the  different  configurations
of  the algorithm (Mi  et  al.  2017).  On  the
other hand, the ensemble model achieved
the highest  predictive  performance  (TSS
>0.78 and AUC >0.95), although for  P. ooc
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Fig. 3 - Coefficient of variation and TSS of nine algorithms and ensemble model for the
modeling of the geographic distribution of 17 pine species in Mexico. (Bio): Bioclim;
(DOM): Domain; (SVM): support vector machine; (MD): Mahalanobis distance; (GLM):
Generalized linear models; (BRT): Boosted regression trees; (GAM): Generalized addi -
tive models; (MAX): MaxEnt; (RF): Random forests; (EM): Ensemble model.
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and P. ps it obtained a lower predictive per-
formance than  RF  (Fig.  S2  in  Supplemen-
tary  material).  These  findings  are  consis-
tent with Hao et al. (2020), who found that
the ensemble model did not always obtain
a higher predictive performance than the
individual models.

Regarding the remaining evaluated algo-
rithms,  it  was  observed  that  SVM,  MD,
GLM and BRT obtained a medium predic-
tive performance. BIO and DOM were the
algorithms with the lowest predictive per-
formance.  These  results  are  similar  to
those of Ren-Yan et al. (2014) and Pecchi et
al.  (2020),  who  classified  algorithms  ac-
cording  to  their  predictive  performance
(high and low). Nonetheless,  we consider
that this may be ambiguous as those find-
ings  could  not  represent the potential  of
the algorithms,  since under certain condi-
tions (predictors, size and sample quality) a
method may or may not be effective (Pe-
terson et al. 2012, Hijmans & Elith 2017). As
explained by Jarnevich & Young (2019), the
evaluation of algorithms is a practice that
should be done in each case study and, de-
pending  on  the  obtained  results  and  the
objectives of the research, the most appro-
priate one should be selected in order to
make the necessary inferences, since under
certain conditions one of them can be bet-
ter or worse than the others.

Prediction and variability of the 
algorithms

The predicted distribution areas for each
of the 17 analyzed pine species (Fig. S1 in
Supplementary  material)  coincided  with
the distribution reported by  Farjon & Filer
(2013). Nonetheless, they differed for  P.ce,
P.do, P.du, P.ha and P.st with respect to the
distribution described by Perry (1991), since
he identified more restricted distributions
than  those  mentioned  by  Farjon  &  Filer
(2013).  The  distribution  of  the  remaining
species  (P.ar,  P.ay,  P.de,  P.he,  P.le,  P.ma,
P.mo,  P.ooc,  P.pa,  P.ps,  P.sc and  P.te)  was
similar.

The  different  algorithms  showed  signifi-
cant  differences  in  the  predicted  spatial
distribution areas (Fig. 2). These results are
due to the fact that the correlative models
depend to  a  great  extent  on the  chosen
modeling algorithms (Araújo & New 2007),
since  each  one  starts  from  different  as-
sumptions for its  construction.  Therefore,
it  can  be  said  that  the  prediction  differ-
ences are inherent to the models (Peterson
et al. 2012,  Hijmans & Elith 2017). Because
of the above,  it will  always be difficult to
choose a priori the best algorithm to model
the  distribution  of  species.  However,  the
results  of this  study can be helpful  when
deciding which is the best algorithm to use
(Jarnevich & Young 2019).

The  results  indicated  that  three  of  the
tested  algorithms  have  a  high  prediction
variability, except for EM and MAX (Fig. 3).
The  ensemble model  had  a  low  variation
and  high  performance  compared  to  the
other algorithms, which provides an advan-

tage in the prediction of the distribution of
species.  If  species  conservation  problems
or predictions are to be addressed under
climate change scenarios, it is important to
have  a  smaller  variation  caused  by  the
modeling algorithms, since more robust in-
ferences  can be  made with  less  variation
(Hao et al. 2020). In several studies, ensem-
ble models have been used as an alterna-
tive to reduce variability between the dif-
ferent  algorithms,  and  they  have  even
been  proposed  as  promising  techniques
for species distribution modeling (Araújo &
New 2007, Marmion et al. 2009,  Hao et al.
2019).  Yet  another  way  to  minimize  vari-
ability problems between algorithms is to
repeatedly evaluate and compare multiple
algorithms and, based on the obtained re-
sults, select the most adequate for model-
ing (Jarnevich & Young 2019).

Conclusions 
The ensemble model showed the highest

predictive  performance  in  modeling  the
spatial  distribution  of  17  pine  species  in
Mexico,  although RF,  MAX and GAM also
provided good predictions. The rest of the
applied algorithms  (BRT,  GLM,  MD,  SVM,
DOM and BIO) presented a lower accuracy;
BIO,  DOM and  SVM were  the  algorithms
with the greatest variability in predictions
and, on the other hand,  MAX and  EM ob-
tained  the  smallest  variation.  The  rest  of
the algorithms attained a medium variabil-
ity in the prediction of the distribution ar-
eas.  For most of the species (16), the en-
semble model showed the best predictive
performance, although for P. ooc the most
accurate predictions  were obtained  using
RF.

The  assessment  of  algorithms’  perfor-
mance  for predicting  the  spatial  species
distribution  is  an  important  step  in  the
modeling process and must be carried out
carefully,  since the selection of  one algo-
rithm over another  could lead to different
results  and  therefore  to  different  conclu-
sions.  Because  the  predictive  differences
between  the  algorithms  are  relatively
large,  the  choice  of  one  over  the  other
should be based on the study objectives.
The results derived from this research sug-
gest that it is not convenient to choose an
algorithm  a priori,  but rather to carry out
tests among the available algorithms in or-
der to increase the confidence in the pre-
diction performance and stability of SDM.
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