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Complex networks, an innovative methodology for functional zoning in 
forest management
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Forest management planning requires a permanent collection of data on the
distribution, composition, and structure of the stands that conform a wood-
land. These data serve as the basis for suggesting the most appropriate man-
agement scheme according to the natural  resource conditions and manage-
ment objectives. It is common for the collected databases’ structure and di-
mension  to  hinder  their  analysis  using  traditional  descriptive  techniques.
Therefore, alternative methodologies are required to facilitate both the explo-
ration of data properties and their collective behavior. We used complex net-
works analysis to identify distribution patterns of topographic, biological, and
productive conditions of a managed forest, suggesting its functional zoning.
The forest was considered a graph consisting of nodes and edges; the stands
served as nodes and interactions between them as edges. Degree, clustering
coefficient, triangles, and modularity were used as segregation and connectiv-
ity metrics to evaluate forest properties and allocate stands to five predefined
potential forest uses (zones). The clustering coefficient metric provided the
better graph partition, allowing to obtain the best alternatives for zoning the
forest in conservation areas, areas with potential for timber production, and
carbon storage. Proposing forest functional zoning through complex network
theory is a powerful methodological option to represent the spatial and non-
spatial interactions among the relevant attributes defining a forest ecosystem
condition.

Keywords: Forest Planning, Spatial Interactions, Segregation And Connectivity
Metrics, Graph Theory

Introduction
Current forest management process is a

complex task that requires frequent updat-
ing on the distribution, composition, struc-
ture, and modification of the forest due to
the  various  silvicultural  practices  applied,
particularly harvesting (Zou et al. 2019).

Despite  the  technological  advancement
in computer systems (Zanin et al. 2016) and
equipment  for  evaluating and monitoring
forest  resources  (Matese  2020),  there  is

still  the  need to  incorporate  new  ap-
proaches that efficiently generate support-
ing information for the planning of forest
management  programs.  New  methods
should  facilitate  and  strengthen  decision-
making processes associated with the sus-
tainable use of forest resources.

Data  that  describe  forest  resources  are
constantly changing and show multidimen-
sional  spatial  characteristics  that  make
difficult their  analysis  using traditional  de-
scriptive techniques. Several methods have
been used to characterize and group the
multiple  attributes  that  define  a  forest,
commonly  using  geographic  clustering
techniques (Mahfuz et al. 2019,  Zou et al.
2019).  Most  of  these methods have been
enhanced to cater to big data sets and re-
late  forest  variables  to  geographical  pat-
terns. Some popular are the Iterative Self
Organizing  Data  Analysis  (ISODATA),  the
Density-Based Spatial Clustering of Applica-
tions  with  Noise  (DBSCAN),  the  Spatial
“K”luster  Analysis  by  Tree  Edge Removal
(SKATER),  or  the  regionalization  with  dy-
namically  constrained  agglomerative  clus-
tering and partitioning (REDCAP  – Kupfer
et al. 2012, Liu et al. 2019).

However,  techniques  using algorithms
such as the REDCAP or SKATEX directly in-
corporates  a  spatial  contiguity  constraint
into  a  traditional  hierarchical  clustering
which could be helpful if the intention is to

create homogeneous areas or when there
is no need to have prior knowledge of the
number of regions (Barbierato et al. 2020,
Lawal 2020). Instead, suppose the purpose
is to characterize the multiple interactions
of spatial  and non-spatial  forest  variables
per  management unit,  dividing the entire
dataset into separate groups of stands but
not  creating homogeneous  areas.  In  that
case, it is more suitable to use a non-hierar-
chical method that could complement the
forest  analysis  attributes  (Karkra  et  al.
2020, Opach et al. 2020).

The Network theory is a novel approach
that  can  tackle  the  above  cases.  It  facili-
tates the representation of interactions be-
tween the elements that conform the for-
est system. This theory emphasizes the vi-
sualization of systems present in nature as
complex  networks,  which  allows  extract-
ing knowledge of both the individual char-
acteristics  that  compose  the  system
(nodes)  and  its  collective  properties
through  the presence of  links  or  connec-
tions between nodes (Cestero & Caballero
2018, Velandia 2020).

Considering the forest as a complex sys-
tem allows to explain the reaction of differ-
ent system components to various stimuli,
such as forest harvest,  and identify  areas
with different potentials for use (functional
zones) to diversify the forest management
scheme. Functional zoning is a process by
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which management units (stands) are clas-
sified into homogeneous strata according
to their  environmental characteristics and
productive potential.  Each zone (stratum)
is  defined  by  the  quality  and  quantity  of
goods and services potentially obtained in
each of them (Liu et al. 2019).

This study proposes an alternative meth-
odology for functional forest zoning under
the complex networks approach. The for-
est  was  considered  a  graph,  where  the
stands were the nodes and the connectiv-
ity  between  stands  the  graph  links.  Con-
nectivity  and  segregation  metrics  were
used to analyze the graph properties and
to identify areas with similar topographical,
biological,  and  productive  conditions.  Re-
sulting functional zones with different pro-
ductive potential  were proposed to diver-
sify the forest management scheme.

Material and methods

Relevant complex networks theory
Mathematically,  a  complex  network  is

made up of nodes N = {n1, …, nN} linked by
a set of links L = {a11, …,  aij} where aij  = {ni,
nj} denotes the link that joins two nodes of
the network. The nodes can represent any
kind of objects or individuals described by
variables, and the links the interactions be-
tween them (Bullmore & Sporns 2009).

The data collection of as many variables
as are available about the objects and in-
teractions that make up the network, are
helpful to describe it through a mathemati-
cal summary commonly known as an adja-
cency matrix (A). This matrix will represent
the structural connectivity and the collec-
tive behavior patterns of the nodes in the
network. The number of rows and columns
of the A matrix will correspond to the num-
ber of nodes in the network, and the val-
ues inside the matrix (aji) will  indicate the
existence/type of the link between nodes
(Rubinov & Sporns 2010, Latora et al. 2017).

The  existence  of  a  link  between  two
nodes (ni and nj) can be determined by as-
sessing their similarity or “distance” in one
or several given variables (characteristics).
A popular method to compute such similar-
ity  is  the  Mahalanobis  distance  (Mdij),
which has been commonly used to perform
classification  in  multi-dimensional  data
(Galeano  et  al.  2014,  Berrendero  et  al.

2020). Mdij is defined as follows (eqn. 1):

(1)

where  Zij =  (Xij -  mi)/si is  the standardized
observation of the i-th variable; C-1 is the in-
verse of the correlation matrix;  Xij,  si,  and
mi are the observations, the standard devi-
ation and the mean of the i-th variable, re-
spectively;  and  k is  the  number  of  vari-
ables.

Mdij is  calculated  between  each  pair  of
nodes and the average of this measure for
the  data  set  (complex  network)  is ob-
tained. Then, to build the adjacency matrix
(A), a link will be set between two nodes if
their computed distance is less than the av-
erage value of Mdij (Montes-Orozco et al.
2020).  The  main  advantage  of  using  the
Mahalanobis distance, unlike the Euclidean
distance,  is  that  all  the  variables  used  to
compare the nodes are considered equally
important as it takes into account the aver-
age value, the ranges of acceptability (vari-
ance) between variables, and compensates
for  interactions  (covariance)  between
them (Srinivasaraghavan & Allada 2006).

Depending on the links’ nature, the adja-
cency matrix (A) can be directed or undi-
rected, and it also can be binary or weight-
ed.  In  an undirected matrix,  the order  of
the indexes on the links does not alter the
network’s  configuration;  a  link  between
node ni and node nj can be expressed indis-
tinctively as  aij  or  aji.  In a directed matrix,
the order of the indices is relevant, the ex-
pression of the link between node  ni and
node  nj can be  aij but  not  aji.  A weighted
matrix occurs when their links have a nu-
merical  value indicating the union’s inten-
sity  (number  of  links  or  a  cost  value).  In
contrast, a binary matrix occurs if only the
presence or absence of a link is considered
(Zanin et al. 2016, Latora et al. 2017).

Various  metrics  can  describe  quantita-
tively the structure and connectivity of the
network  using  the  calculated  adjacency
matrix. These metrics can refer to the net-
work elements (nodes or links) or the dis-
tribution of all of them (Fig. 1). Typically, in-
dividual  element  metrics  reflect  how  a
node is  embedded  in  the  network,  while
distribution metrics provide a more global
network  description  (Rubinov  &  Sporns

2010,  Jiménez  2017).  The  most  common
metrics  for  evaluating  segregation  and
connectivity  are  degree,  clustering  coeffi-
cient, triangles, and modularity.

The degree (Ki) of a node is the number
of connections (aij) linked to the rest of the
network.  The  degree  is  the  most  funda-
mental  network  metric,  and  most  other
metrics  are related to it  (Hernández-Gon-
zález et al.  2020).  Ki is calculated as (eqn.
2):

(2)

The  clustering  coefficient  (Ci)  calculates
the clustering trend of the nodes. If a node
is connected to its neighboring nodes and
all of them are connected, then Ci will have
a maximum value of one. If its neighbors
barely interact with each other, the value
will be close to zero and, if there is no in-
teraction, the value will be zero (Rubinov &
Sporns  2010).  This  coefficient  is  given  by
the following (eqn. 3):

(3)

Ti is  the triangles  metric  and represents
the number of triangles that pass-through
node  ni.  In  other  words,  the  links  of  the
nodes  ni and  nj from the neighborhood of
ni.  Ti is  the  sum  of  the  cycles  of  length
three,  between  a  source  node  and  its
neighbors, for all the network nodes. The
“triangle”  can  also  be  understood  as  a
clique of size three. A clique is a graph (set
of nodes) in which every pair of different
nodes are adjacent,  and there is  an edge
(link) that connects them (Jiménez 2017).
The triangles metric is calculated as (eqn.
4):

(4)

where te and tp are the number of existing
and possible triangles, respectively. Finally,
modularity  (Qi)  evaluates  a  community
structure in the network,  that  is,  subnets
densely  connected  between  them  (Zanin
et al. 2016). A high modularity value exists
if  the  network  has  subnets  densely  con-
nected  internally  but  little  connected  ex-
ternally. On the other hand, a low modular-
ity  value  will  be  obtained  if  the  network
does  not  have  dense  subnets,  but  these
are very well connected. Modularity calcu-
lates  the  minimum  number  of  links  that
need to be removed to disconnect the net-
work (eqn. 5):

(5)

where  Pij =kikj/2L and  Bij =  δ(ci,  cj).  L is the
number of links in the network, Aij is the ad-
jacency matrix,  Pij is  the probability that a
link between two nodes is proportional to
their  degrees,  and  Bij is  a binary  measure
that  defines  whether the nodes  are from
the  same  community.  A  community  is  a
high concentration of links in some areas
of the network (Clauset et al. 2004).
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Fig. 1 - Segrega-
tion and connec-

tivity metrics
commonly evalu-
ated in complex

networks.
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Complex networks for functional zoning in forest management

Data collection and processing
The proposed methodology for defining a

functional zoning scheme through a com-
plex networks analysis  (Fig.  2),  at its  first
step, needs defining the system for analy-
sis and its networks. Here we defined the
forest as the system for complex network
analysis, the stands as the nodes, and the
existing  connectivity  (similarity)  between
stands as the links of the network.

The  forest  owned by the community  of
San  Pedro  El  Alto,  Oaxaca,  Mexico  was
used as study case. This community owns
29,250.58 ha of temperate forest, which it
manages  sustainably  through  its  Commu-
nity Forestry Company. The forest consists
of  1827  minimum  management  units
(stands),  and the current  Forest  Manage-
ment Plan (2016-2017 / 2025-2026) includes
topographic,  biological,  and  production
data per stand.

The descriptive variables available for the
stands  allowed  us  to  build  five  complex
networks. Four networks (R1-R4) included
variables that describe the stand by its geo-
physical,  dasometric,  habitat  diversity,  or
productivity  attributes  (Tab.  1).  The  fifth
network (R5) included all  the information
available per  stand.  Each one of  the  net-
works  were  made  up  of  1827  nodes
(stands),  and  the  existing  links  between
them expressed their similarity.

After all data were standardized by com-
puting the Mahalanobis distances between
nodes,  binary  adjacency  matrices  were
generated for networks R1-R4, setting the
value of one if a connection (link) between
a  pair  of  stands  existed,  and  zero  other-
wise. Differently, for the R5 network, the aij

positions took integer values from 0  to 4.
These  values  resulted  from  the  union  of
the  matrices  of  the  R1-R4  networks.  The
maximum possible value of the link is four
(an existing link in all the R1-R4 networks),
and the minimum possible value is zero if
there are isolated stands (without connec-
tions in all the networks R1-R4). Due to iso-
lated  stands  identified  in  some  matrices,
the matrices’ size in networks R2, R3, and
R4 were 1824, 1824, and 1715 nodes. These
procedures were coded in MATLAB® soft-
ware version R2020b (The MathWorks Inc.
2020).

Once  the  five  adjacency  matrices  were
obtained,  the  next  step  was  to  calculate
the  connectivity  and  segregation  metrics
on an a-per-stand basis, as described in the
previous  section.  The  degree  (Ki)  metric
was  used  to  evaluate  the  connectivity  in
networks’  structure,  while  the  triangles
(Ti), clustering coefficient (Ci), and modular-
ity (Qi) were used to classify the stands into
five  classes  (functional  zones)  previously
defined by a panel of experts (Tab. 2). Fig. 2
synthesizes the flow of tasks performed to
implement  the  described  procedure.  The
triangles  and  clustering  coefficient  were
calculated with the Latapy method (Latapy
2008),  while  modularity  was  calculated
with  the  Louvain  method  (Blondel  et  al.
2008).  The  open-source  software  Gephi

version 0.9.2 (201709241107) was used for
this purpose.

To  minimize  the  variation  in  each  class,
we used the Natural  Breaks (Jenks) algo-
rithm incorporated in the ArcGIS® software
version  10.3.1  (ESRI  Inc.  2015),  which  has
proven  good  performance in  zoning  pro-
cesses (Liu et al. 2019). With this algorithm,
similar values are better grouped, and dif-
ferences between classes are maximized.

Each functional zone represents a combi-
nation  of  desirables  criteria  (productivity,
slope, and habitat) suitable for a particular
production  scheme.  For  example,  low-in-
tensity  harvesting  (extensive  manage-
ment)  is  suggested  in  low-productivity
stands with steep slopes to avoid harvest-
ing over forest growth capacity and reduce
soil  erosion.  Thereby,  to  determine  the
classes  belonging  to  a  specific  functional
zone, the representative characteristics of

the class (stand attributes) were matched
with  the  desirable  criteria  of  functional
zones.

Because of the number of nodes and links
existing in the complex networks (R1-R5),
their visualization by drawing the network
partition  was  useless  as  it  looked  like  a
fuzzy  graph.  For  that  reason,  we choose
the alternative of mapping the segregation
metrics values per stand using ArcGIS® soft-
ware for each complex network.

Results
The results were analyzed in terms of the

structure of the complex networks (degree
values) and the performance of the segre-
gation metrics triangles (Ti), clustering co-
efficient (Ci), and modularity (Qi) to classify
the stands in the five functional zones pro-
posed. A summary of the descriptive statis-
tics per metric evaluated in each complex
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Tab. 1 - Data per stand included in each complex network (R1-R5) proposed.

Network Stand data (descriptor variables)

R1 Area (ha), perimeter (m), current land use, slope (%), and potential 
productive category.

R2 Average total volume (m3ha-1), mean diameter at breast height (cm), average
site index (SI), age (year), average basal area (m2ha-1), average number of 
trees per hectare, average estimated mean annual increment (m3ha-1year-1), 
and habitat category (defined by tree genera dominance ).

R3 Average volume per tree genera (m3ha-1).

R4 Proportion per tree genera of the average total timber volume (0 - 1 values).

R5 The conjunction of the data considered in the R1-R4 networks.

Fig. 2 - Flow chart 
of the proposed 
methodology to 
forest functional 
zoning through 
complex networks
analysis.
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network is available in the Tab. S1 (Supple-
mentary material).

Structural analysis of the complex 
networks

All  the  evaluated networks  were of  the
non-directed type. That is, the origin-desti-
nation order of  the link present between
two stands (nodes) is indifferent. However,
the R1-R4 networks differ from the R5 by
their weight. Networks R1-R4 have terms aij

of binary type (zero if there is no link, one
otherwise) in their adjacency matrices, so
they  are  considered simple non-weighted
networks. On the contrary, the R5 network
has  terms  aij with  values  greater  than  or
equal  to  zero,  which  indicate  the  magni-
tude of the connectivity,  that  is  why it  is
considered a weighted network.

Regarding the network structure,  evalu-
ated by the degree metric (Ki), a high prob-
ability of finding stands (nodes) with a de-
gree much higher than the average is evi-
dent (Fig. 3).  Although the dimensions of
the networks are different, and therefore,

the maximum and minimum degree values
differ between networks,  the behavior  of
the  estimated  density  functions  for  each
network are pretty similar. The degree val-
ue distribution in all  networks presents a
negative asymmetry value where the tail of
the  distribution  is  lengthened  for  values
below the mean. However, in the R5 net-
work,  the  data  were  highly  concentrated
around the mean due to its sharp distribu-
tion curve (Fig. 3).

The highest mean value of the triangles
metric (Ti) was obtained by the network R5
with 707,570 cycles of length three. In com-
parison, the R2 network got the minimum
mean value of 171,230 cycles, which is also
a high number of triangles. Therefore, like
the previous metric, these values suggest a
high connectivity between the stands that
compose  the  forest.  However,  negative
kurtosis values in networks R1, R2, R3, and
R5 indicate a higher proportion of stands
with  a  high  level  of  connectivity;  mean-
while, the R4 network, which has a positive
kurtosis value, shows that it includes more

stands with a similar connection level (see
Tab. S1 in Supplementary material).

In  the  clustering  coefficient  metric  (Ci),
the  values  obtained  for  R1-R4  networks
were in the range of 0-1; and for the R5 net-
work, the values were from 0.6 to 1.  The
highest mean value (0.9) was obtained in
the  R4  network  and  the  minimum  value
(0.7)  in  R1  and  R2  networks.  This  metric
suggests  a  high  clustering  tendency  be-
tween stands in all the networks due to the
numerous interactions. Unlike the behavior
shown by the  triangles  metric,  most  net-
works’ clustering values are highly concen-
trated  around  the  mean,  except  for  R2,
which  presents  a  kurtosis  value  of  -0.78
(see Tab. S1 in Supplementary material).

Finally, the modularity (Qi) computed dif-
ferent  values  for  R1-R5  networks.  The
range values for R1-R3 networks were 0-3,
0-4,  and  0-2,  respectively.  In  comparison,
modularity values of R4 and R5 networks
were higher, in a range of 0-5. But the aver-
age values calculated for the five networks
were in a range of 0.5-1.4. Low modularity
values  mean  that  the  network  does  not
have densely connected communities (sub-
nets densely isolated), but the subnets are
well connected to each other (see Tab. S1
in Supplementary material).

Forest functional zoning
In general, the classification of the stands

in one of the proposed functional zones as
a function of the segregation metrics eval-
uated per network (triangles, clustering co-
efficient,  and  modularity)  showed  consis-
tency in the proportion of allocated area to
each  zone  (class).  However,  there  were
zones in some networks in which no stand
was allocated (Fig. 4).

The zone with the largest assigned area
(number of stands) by all the metrics was
HpFI (high productivity forest suitable for
intensive management) with a range of 22-
47% of the total forest area. Secondly, the
HpFE  zone  (high  productivity  forest  suit-
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Tab. 2 - Desirables stand attributes for the forest functional zones proposed. (BC): bio-
diversity conservation forest; (CS): carbon storage forest; (LpFE): low productivity for-
est suitable for extensive management; (HpFE): high productivity forest suitable for
extensive management; (HpFI):  high productivity forest suitable for intensive man-
agement.

Zones Desirable criteria

BC Stands with superior tree diversity (most trees genera present) and distributed 
in slopes steeper than 42%) or difficult to access.

CS Stands with a medium to high site index (SI), with slopes less than 42%, sites 
with dominance of Pinus, Abies, and Quercus genera and preferentially 
distributed on the periphery of the property.

LpFE Stands with a low site index (IS), with slopes of 29-42%, and sites with 
dominance of Pinus genera.

HpFE Stands with a medium to high site index (SI), with slopes of 15-28%, and sites 
with dominance of Pinus genera.

HpFI Stands with a high site index (SI), with slopes of 0-14%, and sites with 
dominance of Pinus genera.iF
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Fig. 3 - Probability densities
estimated with Gaussian 
kernel for degree values in 
the proposed complex net-
works (R1 - R5).
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able  for  extensive  management)  with  0-
46% of the total  forest.  The CS zone (car-
bon storage forest) occupied 0-39% of the
area;  the  BC zone (biodiversity  conserva-
tion forest) occupied 0-23%, and the zone
with the smallest area was the LpFE (low
productivity  forest  suitable  for  extensive
management) with a range of 0-21% of the
territory (Fig. 5).

If  the  spatial  distribution  of  the  stands
that conform a zone is of interest, it can be
seen  that  the triangles  metric,  calculated
with all the stand’s variables available, gen-
erated zones spatially dispersed. Different-
ly the same metric, using only geophysical

and  dasometric  data,  generated  carbon
storage and timber  production agglomer-
ated zones (Fig. 4a).

Contrary, the clustering coefficient metric
created a single spatial  agglomeration for
the carbon storage zone using both all the
variables  per  stand  and  dasometric  vari-
ables, whereas using only the geophysical
data, this metric generated a scattered sce-
nario for all the zones (Fig. 4b). Finally, the
modularity  metric  agglomerated  the
stands suitable for carbon storage and tim-
ber production in all the networks. Except
in the network R1 (geophysical  data),  the
biodiversity  conservation  zone  was  ex-

cluded from the zoning scheme (Fig. 4c).
Considering  the  spatial  patterns  de-

scribed above, an expert panel selected as
the best match between the stands alloca-
tion  and  the  desirable  criteria  for  each
functional  zone,  the  scenario  obtained  in
the R5 complex network evaluated by the
clustering  coefficient  metric.  This  func-
tional zoning scenario was compared with
the  current  classification of  stands  in  the
study  area  and  validated  as  a  viable
scheme of forest zoning (see Fig. S1 in Sup-
plementary Material for the comparing sce-
narios).

The present forest zoning in the San Pe-
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Fig. 4 - Allocation of stands
by functional zone, accord-

ing to the metrics evalu-
ated for complex networks

(R1-R5) proposed. (BC):
biodiversity conservation
forest; (CS): carbon stor-

age forest; (LpFE): low pro-
ductivity forest suitable for

extensive management;
(HpFE): high productivity
forest suitable for exten-

sive management; (HpFI):
high productivity forest

suitable for intensive man-
agement.

Fig. 5 - Area (ha) allo-
cated to each functional
zone, determined by the
metrics evaluated in the

complex networks (R1-
R5) proposed.
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dro El Alto community is focused mainly on
biodiversity  conservation  and  intensive
timber  production.  In  contrast,  the  final
functional  zoning  proposal  showed  the
possibility  to  add  productive  potentials
(different harvesting intensities and carbon
sequestration areas) into their forest man-
agement scheme.

Discussion

Structural analysis of the complex 
networks

The high values of degree (Ki),  triangles
(Ti),  and clustering coefficient  (Ci)  metrics
in all  the complex networks indicate that
stands are connected significantly at stand
level. This “connectivity” refers to the link-
age  existing  between  two  nodes  of  the
network.  Those  stands  highly  connected
can be identified as the ones which have a
high probability of dominating the existing
interactions in the forest (system). In case
of severe harvesting or eliminating any of
these stands,  there will  likely be a signifi-
cant impact on the rest of the forest’s eco-
logical dynamics,  i.e.,  the distribution pat-
terns of animal and plant species would be
affected.  Therefore,  the  activities  carried
out in any of these stands will indirectly af-
fect  the  dynamics  and  condition  of  adja-
cent and neighboring stands.

Despite the modularity metric (Qi) identi-
fying  stand  communities  into  the  forest,
these  are  well  connected both  externally
and  internally.  There  is  not  an  isolated
community that can disappear by not hav-
ing interaction in the system. A drastic re-
moval  or  alteration of  a  large number  of
stands would be required to stop or pre-
vent  the flow of information and interac-
tions (i.e., dispersal of biological material)
that exist between the subnets or commu-
nities identified in the forest. A community,
in this case, is made up of stands that share
common functional characteristics and re-
lationships.

To  increase  the  adaptiveness  of  forest
management plans to future environmen-
tal  changes  and  promote  the  ecosystem
services  prevalence,  we  need  to  develop
methodologies that incorporate landscape
structural  metrics at  the stand scale such
as proximity, land cover classes, diversity,
and size (Cosović et al. 2020,  Rodrigues et
al. 2021). In response to this need, several
studies have developed different method-
ological  frameworks  to  explore  the  rela-
tionships  among  the  landscape  functions
and define a proper multifunctional forest
zoning  (Müller  et  al.  2020,  Baskent  et  al.
2021,  Marques et al. 2021,  Rodrigues et al.
2021).  However,  none  has  used  complex
network theory to date.

Complex  networks  theory  has  been  re-
cently  applied  to diverse  scopes  such  as
medicine, logistics and transportation, the
World Wide Web, and in ecology to model
ecological  niches and species food chains
(Amaral  &  Ottino  2004,  Amaral  &  Uzzi
2007).  In the  forestry  field,  we identified

the work by  Messier et al. (2019) in which
complex networks theory was used to ana-
lyze  the  spatial  connectivity  of  forest
stands in terms of seed dispersal and tree
establishment capacity as a mechanism to
improve forest resilience to global change.
Beside this work, we did not find any other
evidence about the application of complex
network  theory  in  forest  management
planning,  specifically  in  forest  functional
zoning.

Forest functional zoning
Independent of the information available

for  each  complex  network,  all  the  forest
stands  were  successfully  classified  into  a
functional zone by all the connectivity met-
rics. R2 and R3 networks allocated similar
areas to the defined functional zones as a
result of close connectivity metrics. This re-
sult is logical considering that the R2 net-
work  includes  both  dasometric  and  pro-
ductivity  variables  per  stand.  Meanwhile,
the R3 network synthesizes the set of da-
sometric  variables’  information  through
the available timber volume per stand as a
variable. On the contrary, the metrics cal-
culated for the R3 and R4 networks evalu-
ated the system’s behavior (forest) differ-
ently,  although both  contained similar  in-
formation, i.e., the available timber volume
by  genus,  and  the  proportion  by  genus
present in the stand,  respectively.  Finally,
network R5, which included more informa-
tion and assigned a frequency value to ex-
isting links between stands (weighted net-
work),  generated  considerably  different
values in the evaluated metrics and, conse-
quently, a different definition of functional
zones. In all cases, the validation of special-
ists and decision-makers is essential to dis-
cern which classification is the most appro-
priate.

Spatially  aggregated  zoning  schemes
could facilitate operational forest manage-
ment,  since less spatial  aggregation pres-
ents a greater challenge to implement day-
to-day conservation and silvicultural  prac-
tices (Liu et al. 2019). In our study, the zon-
ing patterns that showed the highest spa-
tial  aggregation  were  determined  by  the
modularity  metric.  However,  this  metric
did not include all functional zones. That is
why the expert panel and the community
selected the zoning scheme presented by
the clustering coefficient metric in R5 (Fig.
4).  It  achieved  a  better  partition  of  the
graph  (network)  by  proposing  the  best
classifications of all the forest’s functional
zones while producing a not negligible ag-
gregation between them.

The San Pedro El  Alto forest presents a
surplus of quality timber inventory, which
denotes a highly productive forest (De los
Santos-Posadas et al. 2015). Thus, the crite-
ria for allocating functional zones favor the
prevalence of areas that benefit from the
forest  productiveness,  as  are  the  timber
production  and  carbon  storage  zones.  In
contrast,  the  allocation  of  stands  to  the
biodiversity  conservation  zone  is  much

smaller. However, the latter is not because
it is unimportant but due to the assignation
criteria defined for this particular zone.

As a spatial entity, the quality of the for-
est  is  heavily  influenced  by  geographical
factors.  Therefore,  tends  to  present  spe-
cific  zoning patterns,  although these  pat-
terns may behave differently as functional
characteristics  of  the  ecosystem are inte-
grated (Wang et  al.  2021).  The methodol-
ogy proposed in our study successfully ana-
lyzed  the  interactions  of  multiple  criteria
related to forest productivity,  intensity of
forest activities, and the ecological impor-
tance  of  the  forest  to  build  a  zoning
scheme. Compared with the current classi-
fication  of  the  stands  in  the  community,
the  functional  zoning  scenario  proposed
shows the possibility of expanding the pro-
ductive potential the forest.

Multiple  optional  spatial  distribution
schemes on the multifunctionality of forest
ecosystems  increases  precision  in  land-
scape management (Myasnikov 2018, Peng
et  al.  2019).  This  justifies  the  current  de-
mand  to  develop  and  adopt  innovative
methodologies for defining functional zon-
ing schemes (Gao et  al.  2014).  Therefore,
our  results  are outlined as valuable infor-
mation  to  support  forest  managers  in  a
previous stage before developing manage-
ment  plans,  increasing  the  efficiency  and
the  effectiveness  in  forest  management
planning.

Limitations and future research 
directions

In  this  study,  only  five  functional  zones
were considered according to the ecologi-
cal  and economic  benefits  that  these  im-
plied  to  the  community  (forest  owners).
Also, all data used to analyze the forest as
a complex system came from the current
management plan (no new data recompila-
tion).

Even  though  we arbitrarily  selected  the
zoning criteria and available stand informa-
tion, the general results show an easy way
to incorporate complex network theory in
forest  management  planning.  The  pro-
posed  methodology  considers  geographi-
cal  attributes,  productivity  aspects,  and
biodiversity  characteristics  of  the  forest,
besides the participation of the owners in
the decision-making process  of  functional
zoning.  However,  we  emphasize  that  no
environmental  characteristics,  ecosystem
functions other than carbon storage,  and
socio-cultural priorities were considered in
the analysis.

To efficiently achieve ecological and eco-
nomic development objectives, and to re-
duce negative  interactions  in  forest  man-
agement areas, further exploration of zon-
ing methods is needed. This challenge can
be met by developing a conceptual frame-
work  for  multifunctional  ecosystem  man-
agement  (forestry)  in  which  information
systems  (as  the  one  presented  in  this
study) are an important element to facili-
tate  the  analysis  of  alternative  manage-

304 iForest 15: 299-306

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Complex networks for functional zoning in forest management

ment scenarios and, at the same time, sup-
port  structured  owners’  participation  on
decision  making  (Zemp  et  al.  2017,  Mar-
tínez-García  et  al.  2020,  Marques  et  al.
2021).

Conclusions
Complex  network  analysis  is  an  innova-

tive approach that allows taking advantage
of all the information available on the con-
ditions, characteristics, and functions iden-
tified  in  forest  ecosystems  for  allocating
stands  to a  predefined zoning scheme.  It
has two main benefits: (i) it facilitates the
processing of large amounts of data com-
posed of qualitative and quantitative vari-
ables; and  (ii)  it enables the deduction of
forest  properties that  are not  identifiable
at first glance but results from the interac-
tions between forest elements.

Although zoning is not new in forest man-
agement  planning,  the  functional  zoning
strategy through the complex network ap-
proach  shows  a  distinctive  quality  to  en-
compass topographic, dasometric, produc-
tion, productivity, diversity, and connectiv-
ity  attributes  associated  with  the  ecosys-
tem  into  the  classification  process.  The
methodology  proposed  in  our  study  also
showed a great capacity to operationalize
a functional zoning scheme for the forest
easily.

The  key contribution of  complexity  the-
ory to forest management is their practical
analysis  to  achieve  functional  zoning and
the support for decision-makers in the defi-
nition of management systems that explic-
itly recognize the multifunctional value of
forests.  In  a  subsequent  stage,  the  pro-
posed work could be integrated into opti-
mization processes to assess the feasibility
of  different  management  scenarios,  that
deal  with  diverse  political  and  organiza-
tional problems in forest management.

List of abbreviations
SI:  site  index;  BC:  biodiversity  conserva-

tion  forest;  CS:  carbon  storage  forest;
LpFE:  low  productivity  forest  suitable  for
extensive  management;  HpFE:  high  pro-
ductivity forest suitable for extensive man-
agement;  HpFI:  high  productivity  forest
suitable for intensive management.
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