Bélanger N, Palma Ponce G, Brais S (2021). Contrasted growth response of hybrid larch (*Larix* × marschlinsii), jack pine (*Pinus banksiana*) and white spruce (*Picea glauca*) to wood ash application in northwestern Quebec, Canada

iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3597-014

Supplementary Material

Tab. S1 - Mineral soil (0 – 10 cm) chemical properties (means with standard deviations in parentheses) as a function of ash treatment in years 3 and 8. pH is in a CaCl₂ solution. N_{kjel} is Kjeldahl nitrogen. P_{Bray} is Bray 2 phosphorus. Ca_e, Mg_e, K_e, Na_e and Acidity_e are respectively exchangeable calcium, magnesium, potassium, sodium and acidity measured from a NH4Cl–BaCl₂ extraction (Amacher et al. 1990), and CECe and BS are effective cation exchange capacity and base saturation, both calculated from the NH₄Cl–BaCl₂ extraction. See "Materials and methods" section for details on analyses. Different letters between treatments represent generalized significant differences between treatments within sampled years which were detected using the Tukey's HSD test. A significant interaction term (treatment×site) is represented by the * symbol. In such cases, treatment differences within each site were detected using simple main effects testing and for concision, outcomes are summarized in writing in the results section.

Property	Year 3			Year 8		
	Control	Half load	Full load	Control	Half load	Full load
pН	3.81 ± 0.22^{b}	$4.19\pm0.32^{\rm a}$	4.03 ± 0.36^{ab}	3.63 ± 0.39	3.60 ± 0.34	3.62 ± 0.41
N_{kjel} (%)	0.08 ± 0.03	0.09 ± 0.02	0.08 ± 0.02	n/a	n/a	n/a
P _{bray} (ppm)	17.30 ± 8.56^{b}	15.50 ± 8.06^{ab}	$22.90\pm9.95^{\mathrm{a}}$	25.90 ± 0.39	26.40 ± 0.34	33.50 ± 0.41
Ca _e (cmol _c kg ⁻¹)	$0.21 \pm 0.11*$	$0.21 \pm 0.07*$	$0.65 \pm 0.52*$	$0.16\pm0.10^{\rm b}$	$0.28\pm0.18^{\rm a}$	$0.36 \pm 0.33^{\text{ab}}$
Mg _e (cmol _c kg ⁻¹)	$0.06\pm0.02^{\text{b}}$	$0.05\pm0.02^{\text{b}}$	$0.12\pm0.06^{\rm a}$	$0.04\pm0.02^{\rm b}$	0.05 ± 0.02^{ab}	$0.08\pm0.04^{\text{b}}$
K _e (cmol _c kg ⁻¹)	$0.08\pm0.02 \textcolor{red}{\ast}$	$0.11 \pm 0.03*$	$0.12 \pm 0.05*$	0.10 ± 0.02	0.13 ± 0.06	0.15 ± 0.07
Na _e (cmol _c kg ⁻¹)	0.05 ± 0.01 *	$0.08\pm0.04 \textcolor{red}{\ast}$	$0.08\pm0.03*$	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.02
Acidity _e (cmol _c kg ⁻¹)	$1.98 \pm 0.47*$	$1.30 \pm 0.52*$	$1.75 \pm 0.54*$	2.13 ± 0.90	1.79 ± 0.55	1.88 ± 0.72