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Local ecological niche modelling to provide suitability maps for 27 
forest tree species in edge conditions
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Ecological Niche Modelling (ENM) portrays the relationship between the actual
geographical distribution of a species and the environmental factors that in-
duced this distribution. Yet most models study species over the wider range of
their distribution; thus,  they are rarely appropriate for forest  management
and forest restoration on the local scale. This study aims to understand the
major environmental factors affecting the distribution of 27 species, through
limiting ENM at national level (Lebanon). MaxENT software was used for mod-
elling. Area under the curve (AUC) values showed a very good robustness of
the models. Minimal biogeographic and climatic parameters such as elevation,
distance from the sea, annual mean precipitation, the average minimum tem-
perature  of  the  coldest  month,  the  average  maximum temperature  of  the
warmest month, and Emberger Quotient were sufficient to obtain robust mod-
elling results. Cloud coverage during summer was identified as a novelty factor
explaining species distribution at the edge of their range. Composite soil and
topography predictors such as Potential Direct Incident Radiation (PDIR) and
the Integrated Moisture Index (IMI) were reduced to simple factors such as as-
pect, slope and available water content, whose contribution was conditioned
to higher data resolution. The high number of presence points enabled us to
study the range of species distribution gathering them according to their eco-
logical  characteristics. The generated reforestation suitability maps and the
likelihood  of  occurrence  of  each  species  were  achieved  to  define  priority
species for conservation and forest management. This information could be
useful for decision-makers and foresters.

Keywords: Ecological Niche Modelling, Suitability Maps, Cloud Coverage, Range
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Introduction
Forests have been traditionally managed

and exploited for a variety of purposes in
the  Mediterranean  region.  These  ecosys-
tems face chronic problems such as forest
fires, fragmentation, overexploitation, pest
outbreaks  and  climate  change  (Quézel  &
Médail  2003,  Blondel  et  al.  2010).  Ecosys-
tem  restoration  through  reforestation  is
currently  a  major  tool  to  address  these
challenges.  Several  countries  around  the
world are currently recurring to such activi-
ties to deal with environmental, economic
and social concerns. Aversely, to achieve it

a substantial funding from governments is
required.

The importance of  forest ecosystems to
increase  the  resilience  of  human  popula-
tions  is  incontestable.  The  efficiency  and
effectiveness of reforestation activities de-
pend on the available resources, funds and
how much research is already available to
guide stakeholders. Optimizing ecosystem
restoration is possible through the under-
standing of the bioclimatic niche of the tar-
get species.

Species Distribution Models (SDMs) or, in
other  words,  Ecological  Niche  Modelling

(ENM)  depicts  the  relationship  between
the current distribution of a given species
(dependent variable) and the environmen-
tal  factors/predictors  (explanatory  vari-
ables) that induced its distribution (Olden
et al. 2002, Guisan & Thuiller 2005, Araujo &
Guisan 2006, Mellert et al. 2011). A wide ar-
ray of  software and statistical  techniques
coupled with  geographic  information sys-
tems (GIS)  and  remote  sensing has  been
used in ENM (Franklin et al. 2000). System-
atics  and  correlative  approaches  are  the
base for developing ENM, where field sur-
veying  and  environmental  predictors  are
used  to  produce  statistically  derived  re-
sponse surfaces. An evaluation of the cor-
relation between the environment and the
species  is  usually  derived  out  of  the  pre-
dicting models. In addition, the ranking of
the input factors and the rating of their im-
pact  on  the  species  distribution  are  con-
cluded  from  the  ENM (Guisan & Zimmer-
mann  2000,  Aghakhani  et  al.  2017).  The
main  drivers  or  predictors  affecting  the
habitat  distribution  of  a  given  group  of
taxa like oaks enabled understanding their
phylogeny and discriminating the different
species  (Dufour-Dror  &  Ertas  2004,  Ste-
phan et al. 2016).

ENM  allows  forecasting  the  future  suit-
ability  area of  species  under  different  cli-
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mate scenarios. Outputs are illustrated by
generated maps  or  models  that  estimate
the species’ distribution and (or) their eco-
logical  niche  in  case  of  a  forecasting  ap-
proximation (Pearson & Dawson 2003,  So-
berón 2010, Sillero 2011).

In  terms  of  ENM,  it  is  crucial  to  under-
stand  the  environmental  factors  that  are
affecting  the  distribution  of  species.  Re-
gardless of the flaws of the different mod-
els,  the overall  patterns of  predicted spe-
cies range shifts, often match observed bi-
ological  tendencies  (Vessella  et  al.  2015,
Aghakhani et al. 2017). In addition to geo-
graphical  coordinates  (altitude,  latitude,
and  longitude),  most  investigations  con-
sider classical climatic parameters, such as
annual  precipitation,  precipitation  in  the
different  quartiles  of  the  year  (seasonal
precipitation), evapotranspiration, average
temperature, the minimum temperature of
the coldest month, the maximum tempera-
ture  of  the  hottest  month,  continentality
index,  Emberger  quotient,  length  of  the
dry season, etc. (Al-Qaddi et al. 2016, Walas
et al. 2019). Topography or soil parameters
and other microscale predictors are gener-

ally omitted due to the large spatial  scale
of the models.

Populations  in  edge conditions  are  sure
to exhibit the highest variability according
to environmental factors changes, being of
major  concern  when  they are  considered
for studying the effects of climate change
(Aitken et al. 2008). The Near East region is
a  crossroad  for  several  biomes  including
the Mediterranean,  the Euro-Siberian and
the  Irano-Turianian,  where  several  tree
species populations find their limit of distri-
bution (Blondel et al.  2010,  Stephan et al.
2018). ENM investigations were tested on a
large scale reaching the total extent of sig-
nificant species in the region such as Quer-
cus  calliprinos (included  as  infraspecific
taxon within Q. coccifera by some authors),
Quercus brantii, and Juniperus drupacea (Al-
Qaddi  et  al.  2016,  Aghakhani  et  al.  2017,
Walas et al. 2019). However, these models
are  not  transferable  for  forest  manage-
ment and ecosystem restoration at the lo-
cal scale.

Lebanon  has  a  characteristic  geographi-
cal situation to study populations in edge
conditions for an array of native tree spe-

cies, on a much smaller scale. The country
lies to the eastern shores of the Mediter-
ranean Sea and constitutes  the boundary
between the Mediterranean and the Irano-
Turanian biomes. The presence of two par-
allel mountain ranges with substantial ele-
vation  (3088m  in  Mount  Lebanon  range,
and 2814m in Anti-Lebanon and Mount Her-
mon)  allows  also  relic  species  from  the
temperate zones to thrive (Abi Saleh et al.
1996, Blondel et al. 2010). Hence, the coun-
try is the southern or eastern limit of many
species such as  Abies cilicica, Acer taurico-
lum,  Acer  monspessulanum  microphyllum,
Arbutus andrachne, Cedrus libani, Cupressus
sempervirens, Fraxinus ornus, Juniperus dru-
pacea, Juniperus excelsa, Quercus cerris and
Sorbus  torminalis.  Moreover,  forests  are
highly fragmented and species like  Amyg-
dalus  orientalis,  Malus  trilobata,  Quercus
ithaburensis,  Quercus  cedrorum,  Quercus
look and Quercus kotschyana are rare or en-
demic (Sattout & Zahreddine 2014,  Tohmé
& Tohmé 2014, Stephan & Teeny 2017).

The national reforestation programs face
challenges related to land availability, con-
flicts with different types of land use, the
economic value of the planted species, the
high  cost  of  plantation  and  management
to  secure  acceptable  seedling  survival
rates.  It  is  crucial  to  address  such  chal-
lenges using an ENM that would integrate
common and novelty  predictors  affecting
the distribution of the listed species. Thus,
it would be capable to downsize the out-
puts to make them useful for foresters at
the local scale, improving the effectiveness
and  efficiency  of  afforestation  and  refor-
estation programs through higher survival
rates.

This study aims at (i) assessing the envi-
ronmental factors, which affects the distri-
bution of 27 tree species native from Leb-
anon,  and  (ii)  obtaining  their  respective
suitability maps for afforestation and refor-
estation programs.

Material and methods
Data  stocktaking  relied  on  two  main

sources: previously collected points by the
authors and a more recent field survey in
2018. Field cruising or traveling across the
field with a vehicle allowed better to con-
sider the abundance of a species in order
to cover the maximum range of variability
and  representation.  Such  an  approach
combining different tree species, different
data  sources  and  abundance  counts  are
key measures required to secure the trans-
ferability of the model (Yates et al. 2018).
Field cruising was conducted using itinerar-
ies covering all  the biogeographic regions
from the coast, to Mount Lebanon western
and  eastern  slopes,  the  Beqaa  and  the
eastern slopes of Anti Lebanon. The previ-
ously  collected points were from random
or systematic field plots in protected areas.
Out  of  the  classical  climatic  parameters
commonly used in SDM, we selected only
the  cumulative  annual  rainfall  (P),  the
mean minimum temperature of the coldest
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Tab. 1 - The factors (predictors) used in the first and second fits of the model, with
their  respective  codes  and  sources.  Obtained  from:  (a)  the  Lebanese  Army  Geo -
graphic  Department;  (b)  National  Scientific  Research  Center;  (c)  WorldClim  (1970-
2000); (d) National Scientific Research Center (2002-2013).

Code Factors Source Remarks

DEM Digital Elevation 
Model (m)

10m Contour Line a Kept in final fit

IMI Integrated 
Moisture index

Hill shade Omitted in final fit

Curvature Omitted in final fit

Flow Accumulation Omitted in final fit

Available water holding capacity 
(AWC) (estimated in mm from soil 
depth and texture as extracted from
CNRS soil maps) b

Kept in final fit of 
the model as 
independent factor

PDIR Potential Direct 
Incident Radiation 
(MJ/cm2 year-1)

Slope (extracted from DEM) in 
percentage

Kept in final fit as 
independent factor

Folded Aspect (extracted from DEM) 
in degree

Kept in final fit as 
independent factor

Latitude (GIS coordinates) Omitted in final fit

EQ Emberger 
Quotient

Cumulative Annual Precipitation 
(mm)

Kept in final fit

Mean of Minimum Temperature of 
the Coldest Month (°C) c

Kept in final fit

Mean of Maximum Temperature of 
the Hottest Month (°C) c

Added in final fit also
as an independent 
factor (Tmax)

NDVI Normalized 
Difference 
Vegetation Index

Mosaic of Landsat images Omitted in final fit

CC Mean Cloud 
Coverage (May 
through July, %)

Cloud rasters d Kept in final fit

DFS Distance from the 
Sea (m)

DEM Kept in final fit

Tmin Mean of Minimum 
Temperature of the
Coldest Month (°C)

Mean of Minimum Temperature of 
the Coldest Month c

Kept in final fit

P Cumulative Annual 
Precipitation (mm)

Precipitation Isohyets b Kept in final fit

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Modelling suitability maps for 27 forest tree species in edge conditions

month  (Tmin),  and  Emberger  quotient
(EQ). The mean maximum temperature of
the  hottest  month  (Tmax)  was  added  in
the  final  fit,  while  the  Normalized  Differ-
ence Vegetation Index (NDVI) was tested
only in the first  variables fit,  as  shown in
Tab.  1.  In  addition,  we  tested  the  mean
cloud coverage (CC) of the months of May
through July calculated for a 12-year period
(2002  to  2013).  Two biogeographical  pre-
dictors were used:  distance from the sea
(DFS)  and  digital  elevation  model  (DEM).
The Integrated Moisture Index (IMI), which
is  a  composite  predictor  combining  geo-
graphic, topographic and soil indices were
adapted from Iverson et al. (1997) with dif-
ferent  combinations  of  weights  for  the
components of the predictor (eqn. 1):

(1)

where HS is  the hillshade,  C is  the curva-
ture, FA is the flow accumulation and AWC
is the available water holding capacity. Arc-
GIS® (ESRI,  Redlands,  CA,  USA)  tools  al-
lowed calculating the three factors,  using
the DEM and soil maps as input data.

Potential Direct Incident Radiation (PDIR)
as  per  McCune  &  Keon  (2002) was  also
tested, using the following equation (eqn.
2):

(2)

where L is the latitude, S is the slope and A
is the folded aspect.

The sources of these respective parame-
ters are presented in Tab. 1, and include the
National Centre for Remote Sensing at the
National Scientific Research Council, which
provided the cloud coverage data in addi-
tion to topographic, rainfall and soil maps
to generate IMI and PDIR. Climatic parame-

ters  were  retrieved  from Worldclim  data-
base over a time series spanning from 1970
to 2000. A first fit of the model was initially
run  with  all  the  above-mentioned  predic-
tors, and another fit omitting PDIR and IMI
due to their  limited effect on the results,
and  NDVI  because  it  limits  the  presence
points  of  the  model.  Simple  topographic
factors  that  are  components  of  IMI  and
PDIR were added to the second fit: aspect,
slope and available water holding capacity
(AWC). Correlation between different pre-
dictors  was  calculated.  Despite  the  high
correlation between Tmax and Tmin, Tmin
and  DEM,  or  between  EQ  and  P,  these
were  retained  since  their  contribution  is
highly  variable  from  one  species  to  an-
other.  Another  reason to keep them was
that DEM, EQ and Tmin are simultaneously
used in the definition of vegetation levels
and bioclimatic zones in the Mediterranean
region (Daget 1977).

From  the  collected  presence  points,
crossed with the different layers of the se-
lected predictors, the range of distribution
of the species was calculated according to
those predictors or environmental factors.
MaxEnt software v.  3.4.1,  a discriminative
model that assigns a class to an observa-
tion by computing a probability was used
(Phillips & Dudik 2008). Even in the case of
presence-only data, it can compare favour-
ably  to  presence/pseudo-absence  models
when tested against real presence/absence
data  (Elith  et  al.  2006).  Every  suitability
map  shows  the  likelihood  of  the  occur-
rence of  a  species,  which corresponds to
the average predicted logistic suitability for
a species in a certain location.

The extent of the background cells for all
the species is set to the boundaries of Leb-
anon. We used auto features and a regular-
ization parameter of 1 for feature selection
for all  species. The weight of background
cells is assumed equal to the extent of the
study area. The size of a background cell is

taken as 30m, which is similar to the resolu-
tion of  the predictor variables and reflec-
tive of the conditions in the field.

In  general,  we used MaxEnt  default  pa-
rameters  to  produce  the  suitability  maps
for the 27 species since we assumed mini-
mal  knowledge  of  species  distribution
ranges and abundancy. Another reason for
our  choice of  the pre-mentioned  model’s
settings  is  the  significant  number  of  spe-
cies to model, which made the adoption of
default  settings  that  are  generally  tested
and best  fit  for  general  conditions  a  rea-
sonable choice for our study.

The Area under  the Curve  (AUC)  gener-
ated by the model allowed for the evalua-
tion of the robustness of the multiple Max-
Ent  models  that  we  tested  (Swets  1988,
Phillips  &  Dudik  2008).  Jack-knife  test  of
variable importance displayed the training
gain of each factor if the model was run us-
ing that factor in isolation. It also allowed
identifying which variables mostly contrib-
uted to the models for the respective spe-
cies.

Results
Fig.  1 shows  the  total  points  used  for

modelling  by  species.  Quercus  infectoria
and  Q. calliprinos were the most recorded
species with 2092 and 1914 points respec-
tively.  By  contrast,  Malus  trilobata  and
Amygdalus  orientalis were  modelled  with
55  and  92  points  respectively.  In  total,
13,837 points were recorded for modelling
27 species.

Tab. 2 displays the factors used in the sec-
ond fit model and their relative predictive
contribution in comparison to each other.
The higher the contribution, the more im-
pact  the  variable  will  have  on  the  occur-
rence  of  the  target  species.  Tmax  and  P
were the most significant explanatory vari-
ables for 7 and 6 of the studied species re-
spectively. Tmin was also of great interest,
being the second or third most important

iForest 13: 230-237 232

Fig. 1 - Number of presence points for the target species according to their source. Grey color for collected points during the survey,
and orange for the earlier collected points. The species identity numbers are displayed as in Tab. 2 and Tab. 3.
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contributor in 16 out of 27 species. On the
other hand, aspect played an opposite role
by not  being among the  three  first  most
significant contributors for any of the spe-
cies.  The remaining variables (AWC, DEM,
DFS, EQ, CC and slope) had an intermediate
position with  disparate results  depending
on the studied species. DFS found the high-
est contribution reaching 60.5% in  Cerato-
nia siliqua, although in most of the cases,
the first contributor did not reach 50%.

The  performance  of  the  model  was  as-
sessed by the AUC. All the obtained results
were higher than the random value (0.5),
even most of them higher than 0.9 proving
that  MaxEnt  was  an  efficient  predictive
software  (see  Tab.  S1  in  Supplementary
material).  Quercus  cedrorum reached  the
highest AUC (0.994) whilst Quercus callipri-
nos reached  the  lowest  (0.788).  Tab.  3
shows the highest values of the Likelihood
of occurrence (LOC) for the target species
and the respective area of the likelihood of
occurrence  exceeding  a  ratio  of  0.5
(LOC50).

A second run exhibited higher AUC values
for some of the species; therefore, it was
adopted  for  further  analysis.  Tab.  S1  and
Tab.  S2  (Supplementary  material)  shows
the values  used in  Jack-knives  to express
training gain if  a certain factor is omitted
and training gain if a certain factor is used
in isolation respectively. The range of distri-
bution of the selected species according to
the investigated environmental factors is il-
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Tab.  3 -  Likelihood  of  occurrence  (LOC)  values  and  area  where  values  are  >  0.5
(LOC50) for the respective taxa.

ID Taxon Highest
LOC value

Area with
LOC50 (ha)

1 Abies cilicica 0.71 5,167
2 Acer monspessulanum microphyllum 0.94 55,008
3 Acer obtusifolium 0.97 40,706
4 Acer tauricolum 0.87 5,524
5 Amygdalus orientalis 0.97 10,318
6 Arbutus andrachne 0.97 54,153
7 Cedrus libani 0.78 8,022
8 Ceratonia siliqua 0.82 61,248
9 Cercis siliquastrum 0.98 50,352
10 Crataegus azarolus 0.97 110,067
11 Cupressus sempervirens 0.96 54,193
12 Fraxinus ornus 0.98 16,065
13 Juniperus drupacea 0.86 5,167
14 Juniperus excelsa 0.83 64,054
15 Laurus nobilis 0.99 43,119
16 Malus trilobata 0.96 30,399
17 Pyrus syriaca 0.99 152,112
18 Pinus pinea 0.90 74,259
19 Quercus calliprinos 0.83 174,139
20 Quercus cedrorum 0.78 655
21 Quercus cerris 0.94 13,923
22 Quercus infectoria 0.80 151,052
23 Quercus ithaburensis 0.67 3,543
24 Quercus kotschyana 0.90 8,189
25 Quercus look 0.91 6,147
26 Sorbus torminalis 0.92 7,728
27 Styrax officinalis 0.97 82,406
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ry Tab. 2 - Factors predictive contribution (in %) to the model, by species for the second model (superscript values indicate the first and
the second contributors).

ID Species Aspect AWC DEM DFS EQ Tmax CC Tmin P Slope

1 Abies cilicica 0.1 0.3 0.5 0.6 3.2 45.21 39.92 6.1 3.8 0.4
2 Acer monspessulanum microphyllum 3.6 1.5 55.31 5.7 0.7 15.72 2.1 8.9 3.7 2.7
3 Acer obtusifolium 2.4 1.0 16.1 18.62 17.3 4.0 2.1 8.8 3.2 26.61

4 Acer tauricolum 2.1 14.12 1.0 9.8 12.5 47.21 4.2 6.0 2.9 0.2
5 Amygdalus orientalis 4.5 3.9 14.0 17.22 8.3 3.7 5.1 7.2 29.41 6.7
6 Arbutus andrachne 4.8 0.9 3.9 23.32 14.3 1.9 2.2 15.0 7.8 25.91

7 Cedrus libani 0.3 3.2 0.6 17.72 0.2 58.41 1.1 11.3 6.8 0.3
8 Ceratonia siliqua 0.1 0.3 7.9 60.51 8.4 4.2 0.5 10.92 1.1 6.1
9 Cercis siliquastrum 6.7 1.1 3.2 4.7 35.91 1.9 4.7 13.0 6.8 22.02

10 Crataegus azarolus 1.8 8.6 27.51 9.5 1.0 12.5 11.3 2.4 19.32 6.1
11 Cupressus sempervirens 1.5 2.2 2.4 12.1 35.01 2.2 1.5 4.7 15.0 23.32

12 Fraxinus ornus 6.5 6.7 2.4 1.9 32.81 6.9 8.5 17.1 4.5 12.82

13 Juniperus drupacea 1.9 3.2 4.4 6.8 4.7 26.72 4.8 13.9 32.71 0.8
14 Juniperus excelsa 0.6 0.8 36.81 10.1 2.4 28.22 4.3 12.4 4.2 0.3
15 Laurus nobilis 4.5 4.1 9.3 26.81 7.2 3.3 6.0 23.72 3.7 11.4
16 Malus trilobata 1.6 1.3 10.2 6.6 1.0 20.92 32.81 16.6 1.4 7.5
17 Pyrus syriaca 4.7 3.1 24.02 12.3 3.1 11.8 0.9 3.3 26.11 10.7
18 Pinus pinea 0.9 19.42 0.8 3.8 0.8 1.6 1.7 18.6 48.01 4.5
19 Quercus coccifera calliprinos 1.0 2.3 2.9 5.1 12.2 5.2 4.1 25.62 13.2 28.41

20 Quercus cedrorum 5.5 16.0 0.3 0.1 16.82 43.11 1.8 11.7 4.3 0.5
21 Quercus cerris 1.5 1.2 0.7 2.5 17.2 32.81 22.62 17.0 4.1 0.4
22 Quercus infectoria 1.1 1.1 17.4 1.2 4.2 2.9 1.9 19.42 48.41 2.4
23 Quercus ithaburensis 0.4 0.2 15.22 14.6 0.0 3.2 60.61 0.1 5.7 0.1
24 Quercus kotschyana 0.4 0.4 0.3 0.4 11.7 46.61 2.3 11.2 25.62 1.1
25 Quercus look 1.8 23.62 36.71 4.1 2.2 4.9 1.2 11.9 12.6 1.0
26 Sorbus torminalis 1.7 8.2 1.8 6.2 7.6 48.91 6.1 12.72 5.4 1.5
27 Styrax officinalis 4.3 1.7 2.5 2.4 1.3 4.7 10.3 15.7 35.61 21.72

- Average contribution 2.4 4.8 11.0 10.5 9.7 18.11 9.1 12.0 13.92 8.3
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lustrated  in  boxplots  aiming  to  visualize
the distribution of 50% of individuals, along
with average maximal and minimal values
(Fig.  S1 to Fig.  S7 – Supplementary  mate-
rial).  Due to the large number  of  studied
species in this work, we illustrate in  Fig. 2
the suitability map and presence points of
Laurus nobilis, while those of the remaining
taxa are shown in Fig. S8 (Supplementary
material).

Discussion
The present work investigated the poten-

tial  distribution  of  27  species  by  ENM  in
Lebanon. The study area is of great inter-
est  because  extreme  environmental  and
topographical  ranges  are  found  from  the
Mediterranean  Sea  to  the  highest  moun-
tains. Qurnat as Sawda reaches the highest
point  with  3088  m  a.s.l.,  only  30  km  far
away  from  the  sea.  These  traits  are  also
found in other circum-Mediterranean areas
like North Africa or Southern Spain. In the
latter,  recent  ENM  studies  have  been
achieved with successful results (López-Ti-
rado & Hidalgo 2014,  2016a,  2016b,  2018).
Thus, these areas are pretty suitable in the
context of global change where tempera-
tures  are  supposed  to  raise  as  well  as  a
changing  pattern  in  rainfall  is  expected
(IPCC 2018). It is the first tentative among
ENM surveys in which 27 native species are
modelled simultaneously, most of them at
the edge of  the area  of  distribution with
high  resolution.  The  high  AUC  values  for
most of the species reflect a very good pre-
dictability  power  since  models  with  AUC
values  above  0.75  are  potentially  useful
(Swets 1988, Phillips & Dudik 2008). It is ev-
ident that  species with a high number of
points (i.e.,  Quercus calliprinos or  Q. infec-
toria),  faced  aggregation  and  resulted  in
lower AUC values, yet without compromis-

ing the model.
Cloud  coverage  (CC)  during  spring  and

summer  is  a  novelty  factor  for  species
thriving in edge conditions, since this fac-
tor would compensate for the lack of pre-
cipitation in summer, and would help to ex-
plain the distribution of relic species such
as  Abies  cilicica and  Quercus  cerris,  which
are  found  on  their  southernmost  limits.
Despite  the  possible  correlation  between
other  environmental  factors  related  to
temperature,  elevation,  precipitation  or
Emberger quotient, solid results were ob-
tained converging with several similar stud-
ies (Vessella & Schirone 2013, Al-Qaddi et al.
2016,  Abdelaal et al. 2019). Composite fac-
tors such as PDIR or IMI need further re-
finement  and  higher  resolution  data  if
modelling for local use is desired (Iverson
et al. 1997,  Hidalgo et al. 2008). Neverthe-
less,  satisfactory  results  are  possible  if

these  composite  factors  are  segregated
into simple factors such as slope or AWC
considered in the present work.

The contribution of each predictor in the
model  and  the  strength  of  the  results
highly depend on: (i) the resolution of the
data from the source;  (ii)  the distribution
of presence points across the studied area;
and (iii)  how spread they are to cover all
possible ranges without being aggregated
in one area where no changes in environ-
mental variables can be depicted. Species
showing  wider  distribution  over  different
environmental gradients resulted in wider
suitability areas, even if they are not abun-
dant  (i.e.,  Malus  trilobata,  Laurus  nobilis,
Crataegus azarolus). Species with presence
points grouped into specific areas (Junipe-
rus excelsa, Quercus cedrorum, Quercus ith-
aburensis)  obtained  a  restricted  potential
area. The latter species witnessed aggrega-
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Fig. 2 - Observed (a) and
potential (b) distribution of

Laurus nobilis in Lebanon.
LOC value classes deter-

mine the color gradient in
the potential distribution

map (b).

Fig. 3 - Range of 
distribution of 
species accord-
ing to elevation 
(m). Species of 
groups I, II, III 
and IV are 
respectively illus-
trated in red, 
blue, yellow and 
green.
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tion and overfitting which affected the out-
put map, LOC values and LOC50 predicted
area.  Distribution  maps  indicate  ratios  of
the likelihood of  occurrence (LOC),  calcu-
lated by MaxEnt for each concerned spe-
cies. The values of LOC and the area with
LOC > 50% (LOC50) are shown in Tab. 3. The
generated  suitability  maps  are  coherent
with  the  respective  presence  points  of
each species, their environmental require-
ments and their realized niche (Davis et al.
1965,  Zohary  1966,  Abi  Saleh  et  al.  1996,
Hajar et al. 2010,  Awad et al. 2014,  Sattout
&  Zahreddine  2014,  Al-Qaddi  et  al.  2016,
Stephan et al. 2016, Walas et al. 2019).

Fig. 3,  Fig. 4,  Fig. 5 and Fig. S1 to Fig. S7
(Supplementary material) show the range
of  the  selected  environmental  factors
per  target  species.  The  potential  niche
matches  with  the  range  of  the  realized
niche. Thus, the studied species can be cat-
egorized into four major ecologic groups,
based  on  the  biogeographic  and  climatic
factors as shown in the above-mentioned
figures:
• Group  I:  Strictly  Mediterranean  species

that  prefer  low  altitudes  (below  1000m

a.s.l.),  close  distance  to  the  sea  (below
20km), that do not tolerate freezing mini-
mal temperatures in winter, but can en-
dure high temperatures  in summer.  The
taxa belonging to this group are indiffer-
ent to cloud coverage, but require a cer-
tain  minimum  of  annual  precipitations
(above 600mm). This group includes Acer
obtusifolium,  Arbutus  andrachne,  Cerato-
nia  siliqua,  Cercis  siliquastrum,  Cupressus
sempervirens,  Laurus nobilis,  Pinus  pinea,
and Quercus ithaburensis.

• Group  II:  Mediterranean  mountain  and
temperate relic species that are on mid-
dle to high altitudes, the average distance
to the sea (15 to 25km), with cooler tem-
peratures,  ample  rainfall  (above  1000
mm)  and  substantial  cloud  coverage
(more than 20%). These include Abies cili-
cica, Acer tauricolum, Cedrus libani, Fraxi-
nus ornus, Juniperus drupacea, Malus trilo-
bata,  Quercus  cerris,  Quercus  cedrorum,
Quercus  kotschyana, and  Sorbus  tormi-
nalis. The ecological  niche of  these spe-
cies is highly variable in extent,  depend-
ing  on  their  respective  requirements.
They  are  tolerant  to  freezing  tempera-

tures, whilst P and CC are variable. Tmin
seems to be the major factor defining the
niche of these species, although the strict
presence of  Abies  cilicica,  Quercus  cerris
and Malus trilobata on the seaward west-
ern  slopes  of  Mount  Lebanon  is  mostly
driven by CC.

• Group  III:  Irano-Turanian  elements  that
are relatively distant from the sea (over
22km),  on  high  altitudes  (mostly  above
1500m  a.s.l.),  enduring low  CC in  spring
(below 18%) and withstanding both high
and  low  temperature  extremes  as  well.
Their  tolerance  to  precipitation  ranges
are  variable,  but  showing  higher  toler-
ance to  arid  environment.  In  this  group
are included Acer monspessulanum micro-
phyllum,  Amygdalus  orientalis,  Crataegus
azarolus,  Quercus  look  and  Juniperus  ex-
celsa. Elevation is the major factor affect-
ing their distribution.

• Group IV:  includes all  species showing a
wide range of distribution for several cli-
matic factors, being found in the Mediter-
ranean  biome  and  transition  areas  to-
ward the Irano-Turanian biome. These in-
clude  Pyrus  syriaca,  Quercus  calliprinos,
Quercus  infectoria and  Styrax  officinalis.
The most determining factor in their dis-
tribution  is  precipitation  followed  by
Tmin. Species of this group benefit from
the widest LOC50 and highest LOC values
because of their high plasticity.
This  work  showed  a  robust  output  in-

ferred by the AUC values. Therefore, stake-
holders  aiming  to  face  the  expected  up-
coming  changing  conditions  (IPCC  2018)
can use 27 suitability maps for forest man-
agement and conservation programs. Sev-
eral scenarios are available according to ei-
ther  harsher  or  smoother  conditions.  Dif-
ferent RCP (Representative Concentration
Pathways) from WorldClim 1.4 project (Hij-
mans et al.  2005) are of great interest to
understand how suitability areas of species
could shift. It is encouraged to use at least
two of these RCPs in the way to assess the
likely uncertainty in their ranges. Recent in-
vestigations simulated changes in the eco-
logical niche under future climate scenarios
for few species (i.e., Quercus calliprinos, Ju-
niperus drupacea). The results showed a re-
duction of the suitable area of these spe-
cies  at  their  global  range,  with  limited
changes  in  Lebanon  which  benefit  from
high mountains and the possibility for shift-
ing towards higher altitudes (Al-Qaddi et al.
2016,  Walas  et  al.  2019).  Nonetheless,  it
would be particularly interesting to investi-
gate the remaining species,  namely those
that  are  endemic  or  thriving in restricted
environmental  ranges  or  in  edge  condi-
tions (i.e., species of Group II).

Conclusion
The contribution  of  each  environmental

factor  to  models  varies  with  the  studied
species.  Limiting  the  models  by  reducing
the number of predictors did not affect the
validity  of  models.  Basic  climatic  and bio-
geographic  factors  such  as  minimal  and

235 iForest 13: 230-237

Fig. 4 - Range of
distribution of

species accord-
ing to the mean

of minimum
temperature of

the coldest
month (°C).

Species of
groups I, II, III
and IV are res-
pectively illus-
trated in red,

blue, yellow and
green.

Fig. 5 - Range of
distribution of

species accord-
ing to the cumu-

lative annual pre-
cipitation (mm).

Species of
groups I, II, III
and IV are res-
pectively illus-
trated in red,

blue, yellow and
green.
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Modelling suitability maps for 27 forest tree species in edge conditions

maximal  temperatures,  annual  precipita-
tion,  elevation and distance from the sea
are pertinent on a small scale. Cloud cover
during  spring  and  summer  is  a  key  con-
tributing factor for ecological niche model-
ling of species on the edge of their distribu-
tion  range.  Composite  factors  related  to
terrain  and  soil  characteristics  should  be
simplified  and  their  contribution  is  condi-
tional  to  higher  data  resolution.  Limiting
multiple models to local context for simul-
taneously  studied  species  allowed  group-
ing them according to their environmental
preferences, producing suitability maps for
potential  reforestation plans,  determining
priority  species  for  conservation  actions,
and  contributing  to  the  IUCN  red list  for
the concerned species.
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