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Integration of tree allometry rules to treetops detection and tree 
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Airborne laser scanning (ALS) has recently gained increasing attention in for-
estry, as ALS data may facilitate the efficient assessment of forest inventory
attributes  and  ecological  indicators  related  to  forest  stand  structure.  This
paper presents a novel workflow for individual tree detection and tree crown
delineation using ALS data. The developed point-based approach included sev-
eral tree allometry rules on permissible tree heights and crown dimensions to
increase the likelihood of detecting the actual tree profiles. The accuracy of
the method was  assessed in  a  heterogeneous  forest  with a  complex stand
structure in Slovakia (Central Europe). ALS measurements were taken using a
RIEGL Q680i scanner at 700 m of height with a point density of 20 echoes per
m2. The ground reference data included the measured positions and dimen-
sions of 1332 trees in nine plots distributed across the region. We found that
the number of individual trees detected by the algorithm using ALS data was
systematically underestimated by 34 ± 15% relative to the reference data. The
delineated crown coverage was underestimated by 2 ± 6% as well, but the lat-
ter difference was not statistically significant (p>0.05).
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Introduction
In  recent  years,  airborne  laser  scanning

(ALS),  also  referred  to  as  airborne  light
detection  and  ranging  (LiDAR),  has  be-
come established as a novel technology for
estimating forest inventory attributes (e.g.,
tree  or  stand  height  and  diameter,  basal
area, volume – Hyyppä & Inkinen 1999, Mi-
kita et al. 2013). The capability of ALS to pe-
netrate tree crowns enables the collection
of  data  on tree  and stand  characteristics
that would otherwise require on-site mea-
surement (Sheridan et al. 2015). Moreover,
the recognition that stand structural diver-
sity has a positive effects on the quality of
most  ecosystem  services  has  further  fos-
tered the application of new remote sens-
ing approaches to stand-structure mapping
(Bottalico et al. 2014). In general, there are
two  broad  groups  of  forest  inventory
methods  based  on  ALS  data:  area-based

approaches  (ABA)  and  individual  tree  de-
tection approaches (ITD).

The  area-based  prediction  of  forest  at-
tributes relies on the statistical dependen-
cy  between  the  field-measured  and  ALS-
derived  variables  (Maltamo  et  al.  2007),
i.e., forest attributes are regressed against
the ALS-derived metrics. Such statistical re-
lationships can be approximated using lin-
ear models (Means et al. 2000), non-para-
metric approaches including nearest-neigh-
bors imputation (Andersen et al. 2011), lin-
ear  mixed  effects  models  with  random
stand-level  intercepts  (Vauhkonen  et  al.
2011a)  or  Bayesian  methods  (Hernandez-
Marin et al. 2007). ABA methods have been
used to assess forest attributes for nearly
20 years (Naesset 1997, Hyyppä et al. 2007,
Xu  et  al.  2014),  though  their  reliability  in
terms of information on tree species, tree
size distribution and the number of  trees

still remains limited (Hollaus et al. 2014).
ITD methods involve a sequence of steps

that  includes  tree  detection,  feature  ex-
traction, and estimation of tree attributes
(Vauhkonen et al. 2014). Direct detection of
individual  trees  and  assessment  of  tree
heights  usually  involves  a  raster-based or
point-based  techniques  (Packalén  &  Mal-
tamo  2007,  Lindberg  &  Hollaus  2012),
whereas tree or stand parameters are usu-
ally  inferred  indirectly  (Tuominen  et  al.
2014).  For  example,  tree  or  stand  diame-
ters  are  estimated  based  on  tree  height,
crown size or stem density using allometric
models, geometrically weighted regression
methods (Salas et al. 2010) or various non-
parametric  approaches  (Packalén  &  Mal-
tamo 2008). The precision of estimates of
tree and stand volume, which are the pri-
mary  variables  of  forestry  interest,  ulti-
mately  depends  on  the  accuracy  of  the
underlying characteristics,  and is  affected
by the accumulation of both detection and
estimation  errors  (Maltamo  et  al.  2009).
Although  numerous  tree-level  algorithms
have been reported in the literature, their
accuracy  is  still  inadequate  for  ITD meth-
ods  to  be  applied  in  forest  inventories
(Vauhkonen et al. 2014).

Many  approaches  have  been  developed
to  detect  individual  trees  based  on  ALS
data. Overviews were provided by Vauhko-
nen et  al.  (2011b),  Kaartinen et  al.  (2012),
Koch et  al.  (2014),  and  Eysn et  al.  (2015).
Typically,  the  smoothed  canopy  height
models  (CHM)  or  laser  point  clouds  are
used  for  local  maxima  detection  and  ex-
pansion  (Koch  et  al.  2006,  Zhang  et  al.
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2015), watershed-based delineation (Yao et
al. 2014) and point-cloud clustering (Pirotti
2010, Gupta et al. 2010). Hybrid techniques
that combine the ALS data with different
kinds of geo-data and a variety of  a priori
information  are  also  used  (Heinzel  et  al.
2010,  Lähivaara  et  al.  2014).  A  promising
solution for improving tree detection accu-
racy is based on the use of tree allometry.
For example, the region-growing algorithm
by Tiede & Hoffmann (2006) stops the tree
detection  process  based  on  the  minimal
height and maximal permissible width of a
tree crown.  Ene et al.  (2012) proposed to
use the area-based estimate of stem num-
ber for optimizing the CHM resolution and
filter size.  Swetnam & Falk (2014) included
a rule  based on the  expected canopy ra-
dius  in  the  treetop  detection  algorithm
that  prevents  branches  of  a  single  tree
crown  to  be  classified  as  local  maxima,
which usually reflect the treetops.

The  comparability  of  accuracy  assess-
ments  conducted  under  different  condi-
tions is limited. However, it has been sug-
gested  that  the  extraction  method  from
ALS data is  the main  factor  affecting the
accuracy  of  tree  detection,  while  point
cloud density has  a  lesser impact  (Kaarti-
nen  &  Hyyppä  2008).  Plot  size  may  also
affect the accuracy of estimates of forest
structure  attributes.  In  particular,  larger
plots  can increase the accuracy  since the
edge effect and co-registration errors are
significantly  reduced  as  compared  with
smaller plots (Frazer et al. 2011,  Ruiz et al.
2014).  Research  has  also  suggested  that
accuracy of tree detection in terms of the
relative root mean square error (RMSE%) is
in  the range of  32-89% and the detection
rate is in the range of 40-93%.

The  aim  of  this  paper  is  to  present  a
point-based workflow for detecting individ-
ual  trees  and  delineating  their  crowns
based  on  ALS  data.  The  proposed  algo-
rithm  attempts  to  improve  several  short-
comings of the current extraction methods
through the following steps:
• the algorithm uses the complete informa-

tion  contained  in  ALS  data  in  all  proce-
dures of tree detection workflow, and op-
timizes  the  computationally  demanding
operations  by  tiling  and  thinning  tech-
niques applied on the raw ALS data;

• treetops detection and tree crowns delin-
eation is done iteratively, and each itera-
tion includes tests for treetop identifica-
tion based on tree allometry rules, aiming
to ensure that the permissible spatial and
the  dendrometric  structure  of  a  forest
stand  and  a  tree  are  not  violated,  and
that  the  likelihood  of  falsely  identified
trees is reduced;

• users can modify a number of parameters
and customize the algorithm for  match-
ing specific stand conditions and/or meet-
ing specific objectives.
The presented algorithm is implemented

in  the  reFLex  (remote  Forest  Land  ex-
plorer) software, which was developed by
the  National  Forest  Centre,  Slovakia.  The

objective  was  to  develop  an  easy-to-use
application to be employed in the forestry
practice.

Materials and methods

Algorithm description
The algorithm for treetop detection and

tree  crown  delineation  includes  five  con-
nected procedures which are described in
detail in the following sub-chapters.

The  input  file  is  a  classified  point  cloud
containing ground and vegetation classes.
The  initial  procedures  are  applied  to:  (i)
divide the points into a 3-dimensional regu-
lar tiles (Tiling procedure); (ii) calculate the
absolute  height  above  ground  for  each
point  (Normalization  procedure);  and  (iii)
reduce the number of points in the input
file  by  applying  a  minimum  tree  height
threshold  (Height  restriction  procedure).
These operations yield a point cloud that is
further used for an iterative search of tree-
tops  and  tree  crowns  (Finding  the  local
maxima,  Geo-Dendrometric  test,  Delinea-
tion of tree crowns). Finally, the outputs of
all  procedures  are exported to point  and
polygon vector files in the ESRI shape (shp)
format.

Point cloud tiling and normalization
The tiling procedure is used to divide the

raw point cloud to a regular 3-dimensional
tiles. This procedure is applied to efficiently
use the  computer  memory and  allow for
parallel  processing  of  points  allocated  to
the tiles. The user-defined tile size (TS) is a
variable that can significantly affect output
accuracy.

The normalization of raw point cloud was
applied  to  calculate  the  absolute  height
above ground (hnor) for each point in each
tile (eqn. 1):

where  hnor is  the  normalized  height  of
points in the tile (in m), zmax is the elevation
of points in the tile (m a.s.l.), zmin is the ele-
vation of the lowest point in the tile inter-
polated  from  the  three  adjacent  tiles  (m
a.s.l.).

Height restriction
The height restriction procedure defines

the minimal height (m) of trees to be iden-
tified, thereby all points below this thresh-
old  are discarded.  This  operation reduces
the  initial  number  of  points  and  the  re-
quired  computation  time,  and  defines  a
shortest  tree to be identified in  the next
steps.

Finding the local maxima
A  moving-window  analysis  (Frank  2005,

Longley  et  al.  2005)  is  applied  to  search
iteratively for local  maxima (as presumed
treetops) in the processed point cloud. The
search  is  performed  in  an  area  covering
eight neighboring tiles (fewer at edge loca-
tions).  The  detected  local  maxima  are

referred  to  as  the  theoretical  treetops
(Tteo), and then subjected to a geo-dendro-
metric (GD) test.

Geo-dendrometric test
As part of the local  maxima detected in

the previous operation might not be indica-
tive of true treetops, an additional test is
applied to select a subset of Tteo that is con-
sidered  to  include  the  real  treetops.  We
conceived  a  set  of  dendrometric  criteria
which define a permissible tree and stand
structure  in  terms  of  tree  distribution,
height  relationships  between  trees,  and
the relationship between tree height  and
crown dimensions. The values of such crite-
ria  can  be  derived  from  ground-sample
data  collected  in  the  evaluated  area  or
taken  from  literature  on  tree  allometry.
The  Tteo that  pass  the  GD  test  conditions
are referred to as true treetops (Ttrue). The
remaining Tteo become false treetops (Tfalse)
and are processed along with the remain-
ing points in a cloud in the next operations
of the workflow. The GD test  consists  of
the following steps: 
(a)  Testing  for  height  differences  between
trees. A circular test area with radius that
approximates the ratio of mean crown ra-
dius to tree height in the stand (crmean),  is
created around each Tteo (Fig. 1a), and the
presence of other Tteo within the test area
is  evaluated.  The size of  the test  area r lim

(m) is defined as (eqn. 2):

where Thteo is the tree height of the theo-
retical top (m), and crmean is a user-defined
estimate of the ratio of mean crown radius
to tree height in the investigated forest. If
no additional Tteo occurs at a distance < rlim,
such Tteo is accepted as a real treetop and is
maked  Ttrue (Fig.  1b).  Contrastingly,  when
others Tteo occur within the rlim, such Tteo are
marked as Ttest and tested for height differ-
ences  (Fig.  1c).  The  rationale  underlying
this test is that if the heights between the
two tested Tteo are convex, such Tteo repre-
sent  two  treetops.  In  the  opposite  case,
the  lower  Tteo is  discarded,  and  only  the
higher  Tteo is  marked  as  a  real  treetop,
while the discarded Tteo is considered as a
part of crown of the higher Tteo. To decide
which  Ttest in  the  tested  pairs  is  the  real
treetop, the normalized heights (hT.nor) con-
necting the respective pair of Ttest are eval-
uated  (Fig.  2a).  The  next  step  requires  a
customized  value  that  approximates  the
ratio  of  mean  tree  height  differences  to
tree  height  in  the  investigated  forest
(hdmean).  Then,  the  limit  h lim (m)  is  calcu-
lated for each lower Ttest as (eqn. 3): 

where hlim is the limit of the test (m), ThL.test

is the tree height of the lower tested top
(m) and hdmean is the estimate of the ratio
of  mean  tree  height  differences  to  tree
height in the investigated forest.

460 iForest 10: 459-467

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

r lim=Thteo⋅crmean

hlim=Th L. test−(ThL .test⋅hd mean)

hnor= zmax− zmin
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Finally,  if  at  least  one  hT.nor between  the
evaluated  pair  of  Ttest is  below  hlim,  both
tested  Ttest are  accepted  as  real  treetops
(Fig.  2b).  In  the  opposite  case,  only  the
higher Ttest is considered as a real treetop
(Fig. 2c).
(b)  Test  of  the  horizontal  and vertical  dis-
tance  between  trees.  The  horizontal  dis-
tance between trees is calculated in order
to  discard  false  treetops  situated  in  the
crowns of other trees. First, the distance to
the closest Ttrue is calculated for all new Ttest

(i.e.,  those  appearing  in  the  second  and
subsequent iterations of the mowing-win-
dow-based search for the local  maxima  –
Fig. 3a).  The next step requires the maxi-
mum  permissible  crown  width  (cwmax  –
crown width expressed as a proportion of
tree height) to be customarily established
for the investigated forest. Then, the limit
dlim (m) is calculated for each Ttrue (eqn. 4): 

where dlim is the limit of the test (m), Thtrue

is the tree height of the true top (m), cwmax

is  the  estimate  of  the  ratio  of  maximum
crown diameter to tree height in the evalu-
ated forest. The test assumes that no tree-
top is allowed to occur within the distance
dlim around  any  Ttrue.  The  case  of  trees
growing  in  the  understorey  is  described
below.

The  vertical  distance  between  trees  is
tested to discard false treetops situated in
the crowns of other trees, and to capture
the trees  situated under the canopy.  The

test requires the user to specify the maxi-
mum crown length in the investigated for-
est, in terms of crown length proportion of
tree height (clmax). Then, the limit l lim (m) is
calculated for each Ttrue (eqn. 5):

where llim is the limit of the test (m), Thtrue is
the tree height of the true top (m), clmax is
the  estimate  of  the  ratio  of  maximum
crown length to tree height in the investi-
gated forest. This test assumes that a tree-

top can occur under the crown of any Ttrue

(Fig. 3b, Fig. 3c).

Delineation of tree crowns
Each Ttrue is assigned to its central crown

part  (CCP),  which  is  a  circle  of  diameter
equal to the tile size (TS). Then, the periph-
eral crown parts (PCP) of the point cloud
are repeatedly assigned to the nearest CCP
until they meet any point already assigned
to  any other  CCP  or  until  they reach  the
limits  for  assigning new crown parts  (de-
scribed below). A height limit ensures that
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Fig. 1 - (a) Test for 
height difference be-
tween trees: a test-
ing area (rlim) is cre-
ated around each 
theoretical treetop 
(Tteo, grey trees) with
radius equal to the 
ratio of mean crown 
radius to tree height 
in the investigated 
forest (crmean, 0.15 or 
0.3 of tree height in 
the example); (b) If 
only one Tteo is found 
in the rlim, it is marked
as real treetop (Ttrue, 
green tree); (c) oth-
erwise, all co-occur-
ring Tteo are marked 
as testing tops (Ttest, 
brown trees).

Fig. 2 - Test for height difference between trees (second part).
(a)  The normalized heights  hT.nor (black points)  between the
pairs of Ttest  are calculated using the point cloud data. Then,
the height difference limit hlim is calculated for the lower Ttest in
each pair of Ttest (light brown tree). The limit depends on the
ratio  of  mean  tree  height  differences  to  tree  height  in  the
stand (hdmean, 0.15 and 0.3 in the example); (b) If any hT.nor is
lower  than the hlim,  the  Ttest is  marked as  real  treetop (Ttrue,
green  trees);  (c)  otherwise,  Ttest is  marked  as  false  treetop
(Tfalse, dark brown tree).

Fig. 3 - Tests of horizontal and vertical distance between trees
are performed simultaneously to remove the theoretical tree-
tops in locations where treetops are not expected to exist. (a)
A horizontal limit dlim is calculated for each treetop Ttrue to rep-
resent  a  maximum  permissible  crown  width  in  the  stand
(cwmax, 0.4 of tree height in the presented example). A vertical
limit  llim is  calculated  to  define  a  maximum permissible  tree
length (clmax, 0.5 and 0.8 of tree height in the presented exam-
ple);  (b,  c)  Then,  all  tested  treetops  (Ttest)  are  classified  as
either new real treetops (Ttrue) or false treetops (Tfalse).
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all PCP which are to be assigned to the CCP
are lower than Ttrue and in the height range
specified  by  the  crown  length  limit  (llim).
Distance limit ensures that PCP is situated
within  the permissible  width range speci-
fied by the crown distance limit (d lim). The

information on the horizontal and vertical
positions of all tested PCP is obtained from
the point cloud data.

Finally, all parts of the crown (central and
peripheral) assigned to the Ttrue are merged
to create a single crown object, and its pro-

file  is  smoothed  by  Bezier  interpolation.
We found this method to well approximate
the real 2D crown projection, allowing the
fast processing of a large number of tree
crowns. After the crown delineation phase
is completed, the crown coverage is calcu-
lated as the ratio of  the forest  floor cov-
ered by the delineated vertical crown pro-
jection and the whole stand area.

Parameters used in the current study
We tested the effect of three tile sizes (TS

= 1,  2  and 3 m) on tree detection perfor-
mance. A minimum tree height parameter
was set  with  respect  to the conventional
forest definitions by IUFRO and FAO to 5
m.  Limits  for  geo-dendrometric  test  and
crown  delineation  were  estimated  based
on  field  sample  data.  The  ratio  of  mean
crown radius to tree height (crmean) was set
to 0.15, the ratio of mean tree height differ-
ences to tree height  (hdmean)  was 0.1,  the
ratio  of  maximum  crown  width  to  tree
height  (cwmax)  was  0.4,  and  the  ratio  of
maximum  crown  length  to  a  tree  height
(clmax) was set at 0.7.

Data sources

Study area description
The research was conducted in the Forest

Enterprise  of  the  Technical  University  in
Zvolen, central Slovakia (48° 37′ N, 19° 04′ E
– Fig.  4).  The forest  area covers 9964 ha
and  its  prevalent  aspects  are  south,  east
and south-west. The lowest elevation is at
Jalná (280 m a.s.l.) and the highest at the
Lavrín  peak  (1150  m  a.s.l.).  The  territory
includes  oak,  beech-oak,  beech,  fir-beech
and  spruce-fir-beech  forest  vegetation
zones.

ALS data
The ALS data used to test the applicability

of the presented workflow were acquired
in April 2012 using a RIEGL Q680i scanner.
The average flying altitude was 700 m. The
instrument  operated  at  pulse  rate  fre-
quency of 320 kHz, with a 122 Hz scan fre-
quency and scan angle of ± 50 degree. The
obtained  laser  data  covered  the  whole
study area and had an average density of
laser hits  of  20 points per m2.  From each
emitted pulse, a maximum of seven returns
were recorded. The point ratios were 56%
for the first echo, 21% for the second, 13%
for the third, and 10% for other echoes.

Ground reference data
The ground data were obtained by a ter-

restrial survey in a part of the study area.
The  survey  was  carried  out  in  nine refer-
ence plots (RP) covering a total area of 3.3
ha (Fig. 4), which represented various relief
and stand structure conditions (Tab. 1). The
selected  RP contained  a  range of  terrain
slopes, forest stands at different develop-
ment stages, and vertical structures. 

Most tree species occurring in the region
were represented in the RPs. The species
composition  was  dominated  by  Norway
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Tab. 1 - Description of measured stand data in the reference plots (RP).

Code Area
(ha)

Number 
of tree
species

Conifers
(%)

Mean
height

(m)

Mean
diameter

(cm)

Volume
(m3 ha-1)

Slope
(%)

RP1 0.50 6 8 26.67 32.55 429.16 25
RP2 0.30 6 43 27.27 34.73 611.49 33
RP3 0.25 7 61 26.64 37.75 446.25 5
RP4 0.25 5 73 32.72 43.57 622.12 6
RP5 0.25 3 1 26.91 26.68 584.45 37
RP6 0.25 3 80 27.31 44.31 617.80 22
RP7 0.25 5 50 23.70 36.60 508.44 22
RP8 1.00 6 75 28.59 43.37 507.18 25
RP9 0.25 1 0 29.20 35.98 456.33 22
Total 3.30 11 - - - 4783.22 -
Average 0.37 5 43 27.67 37.28 531.47 22
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Fig. 4 - The study area. Elevation and position of the surveyed reference plots (RP1-
RP9) are indicated by red circles on the maps.
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spruce (Picea abies L. Karst) with 42% cover-
age. Other conifers are Silver fir (Abies alba
Mill.) with 13% and European larch (Larix de-
cidua Mill.) with 0.1% coverage. Non-conifer
species covered less than 45% of the forest
area,  and  were  dominated  by  European
beech (Fagus sylvatica  L.) with 34%, Sessile
oak  (Quercus  petraea  Matusch)  with  6%,
European  hornbeam  (Carpinus  betulus  L.)
with  3%  coverage,  and  other  deciduous
trees, which occurred in less than 2% of the
forest area.

The crown canopy closure in the RP was
between 78% and 100%. Almost 70% of the
measured trees were situated in the main
crown level (co-dominant trees, constitut-
ing the main canopy), 20% belonged to the
upper  level  (dominant  trees  higher  than
the  main  canopy  level)  and  10%  to  the
lower level  (intermediate and suppressed
trees lower than the main canopy).

A total of 1322 trees with diameter ≥ 7 cm
were  measured  for  position,  species,
height and diameter. The crown coverage
in  each RP was estimated as  the  propor-
tion  of  forest  floor  covered  by  the  esti-
mated vertical projection of tree crowns.

Accuracy assessment
An accuracy assessment was carried out

by  comparing  the  ground  reference  data
(TERj)  with outputs derived from the ALS
data  using  the  method  described  above
(ALSj).  The  accuracy  of  both  individual
trees detection and crown coverage delin-
eation was evaluated for three tile sizes -
1×1 m (TS1), 2×2 m (TS2) and 3×3 m (TS3).

Differences  were  calculated  between
ALSj and  TERj and  the  mean  difference
(eqn. 6 – see below) used as an indicator of
systematic error (i.e., of under- or overesti-
mation), and tested for significance. First,
the  normality  of  difference  distribution
was tested using the Shapiro-Wilk W test
to allow for a proper selection of the statis-
tical test. If the differences were normally
distributed, the Student’s paired t-test was
used (α = 0.05) with f = m-1 degrees of free-
dom (mean difference test).  If  the differ-
ences  were  not  normally  distributed,  the
non-parametric  paired  Wilcoxon  test  was
used (α = 0.05) with f = m-1 degree of free-
dom (median difference test). The random
error  component  (eqn.  7)  was  used  to
assess the dispersion of differences around
the  mean  difference.  The  root  mean
square error (eqn.  8) was used to aggre-

gate both the systematic and the random
error  components.  The  relative  e%,  se%,
RMSE% were calculated as the ratio of their
absolute  value  and  arithmetic  average of
the reference data (eqn. 6, eqn. 7 and eqn.
8).

where  e is  the mean difference,  se is  the
standard deviation of mean differences,  ei

is  the  individual  difference,  RMSE  is  the
root mean square error, n is the number of
observation, xi and xî are the ground-refer-
ence  and  ALS-derived  attributes,  respec-
tively for the i-th tree.

The following detection rates were used
to assess  the  ratio  of  detected individual
trees  and  the  reference  trees:  (i)  the
extraction  rate  (ER),  as  the  total  rate  of
detected trees (ALS) in respect to the num-
ber of reference trees in RP (TER – eqn. 9):

(ii)  the matching rate (MR),  i.e.,  the total
rate of matched trees (eqn. 10):

where TP indicates the true positives; (iii)
the  commission  rate  (CR),  i.e.,  the  total
rate  of  detected  trees  that  could  not  be
matched (eqn. 11):

where FP indicate the false positives; and
(iv) the omission rate, i.e., the total rate of
reference trees that could not be matched,
according to Eysn et al. (2015 –eqn. 12).

where FN indicates the number of false ne-
gatives.

Results
The  analysis  of  ground  survey  data  re-

vealed  a  number  of  treetops  larger  than
that  detected  by  the  ALS-based  assess-
ment. Especially in densely forested areas,
the detected local  maxima do not always
represent the exact tree positions, thus the
matching  rate  was  low.  Trees  that  were
standing alone, coniferous and clearly sep-
arated trees in loosely stocked areas were
correctly detected in most instances.

Accuracy of individual trees detection
First,  we  evaluated  the  extraction  and

matching rates for the three forest types
represented in the reference plots (conifer-
ous, deciduous and mixed forest) and for
three tile sizes (TS = 1, 2 and 3 m – Fig. 5).
The bar graphs show that the optimal tiling
size was 2×2 m (TS2). This resolution pro-
duced the highest extraction and matching
rates (68 ± 14% and 65 ± 14%, respectively)
with acceptable commission and omission
rates (4 ± 2% and 35 ± 14%, respectively).

The evaluation of differences in the num-
ber of individual trees detected by the pro-
posed  method  and  the  number  of  refer-
ence  trees  on  the  ground  suggested  an
overestimation using the tile size TS1 and
an underestimation using tile size TS2 and
TS3. The use of TS2 resulted in the highest
accuracy,  yielding  an  underestimation  of
-34 ± 15%, with a RMSE% of ± 41%. The mean
or median paired test  confirmed that the
differences between number of field-mea-
sured and detected trees for each tile size
were  statistical  significant  (p<0.05),  i.e.,
the  output  of  individual  trees  detection
was significantly biased (Tab. 2).

We investigated the effect of the select-
ed stand (in terms of tree species composi-
tion, number of tree species, mean height,
mean diameter, and crown coverage), and
site characteristics (slope) on the quality of
the  ALS-based  tree  detection  (Fig.  6).  A
higher accuracy in the detection of individ-
ual  trees  was  achieved  in  stands  with  a
higher share of coniferous trees, as well as
in stands with trees of greater dimensions
(diameter and height) and higher social lev-
els. A higher accuracy was also achieved in
stands  characterized  by  low  relief  slope,
sparse crown canopy, and small number of
tree species. However, this trend was sig-
nificant  (p<0.05)  only  for  canopy  closure
and  mean  stand  diameter.  Other  para-
meters did not show any significant effect
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on the accuracy of tree detection.

Accuracy of crown coverage delineation
The  crown  coverage  values  obtained

using the three alternative tile  sizes (TS1,
TS2  and TS3)  are shown in  Tab.  3,  which
also  includes  a  ground-measured  propor-
tion of crown projections of the total area
in the reference plots.

The proposed algorithm underestimated
the  crown  coverage  by  -11  ±  6%  with  tile

size TS1 and overestimated the crown cov-
erage  by  8  ±  6%  with  tile  size  TS3.  The
RMSE% was ± 12% for TS1 and ± 10% for TS3.
As it was the case for the number of trees,
the TS2 setting provided the best estimate
of  crown  coverage,  resulting  in  a  slight
underestimation (-2 ± 6%). The RMSE% indi-
cated that the crown cover was estimated
with an accuracy of ± 7%. Our analyses con-
firmed that different tile sizes significantly
affect  the  accuracy  of  crown  coverage

delineation as well.  At the same time, we
found  that  only  the TS2  setting provided
the  output  that  matched  well  with  the
ground  measurements,  however,  this  dif-
ference  was  not  statistically  significant
(Tab. 4).

Discussion
In  this  study  we  explored  the  perfor-

mance of  a  newly-developed point  cloud-
based algorithm for the detection of tree-
tops and the delineation of tree crowns in
a temperate mixed forest in Slovakia.  We
were  particularly  interested  in  evaluating
the  benefits  of  integrating  customizable
tree allometry information in the model for
the detection of individual tree.

Although  the  accuracy  of  the  proposed
method  did  not  exceed that  reported by
other researches (Vauhkonen et al.  2011b,
Kaartinen et al. 2012, Koch et al. 2014), our
study  involves  several  innovations  which
might contribute to improve tree detection
from  ALD-derived  data.  In  the  following
sections,  we discuss the assets  and limits
of our results.

Accuracy of tree detection
Our  findings  indicated  that  the  applica-

tion of the developed algorithm using opti-
mal settings can correctly capture approxi-
mately 65% of  all  trees  in  the study area.
According to previous studies (Morsdorf et
al. 2004, Kandare et al. 2016), the detection
was less  successful  in  stands  with  higher
presence of deciduous species with closed
crown  canopy,  due  to  their  crown  mor-
phology  with  indistinct  treetop.  On  the
other  hand,  the  crown  projections  were
delineated with a very high accuracy (-2 ±
6%)  and  the  shape  of  delineated  crowns
represented the real  2D crown projection
very well.

There  are  several  factors  which  could
have affected the accuracy of  tree detec-
tion in our assessment, and which should
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Tab. 2 - Differences and paired test between number of reference trees (TERn) and
detected trees (ALSn) for different tile size (TS1-3). (e%): relative mean error; (se%): rel -
ative standard deviation of mean error; (RMSE%): relative root mean square error; (*):
null hypothesis is rejected (p<0.05). Sample size: m=9.

Compared 
variables e% se% RMSE%

Normality Test Paired Test

W p-value t or Z p-value
TERn vs. ALSn_TS1 100 52 118 0.802 0.022* 2.666 0.008*
TERn vs. ALSn_TS2 -34 15 41 0.931 0.486 4.299 0.003*
TERn vs. ALSn_TS3 -59 11 68 0.837 0.053 5.315 0.001*

Tab. 3 - Reference crown coverage (TERc) and delineated crown coverage (ALSc) for
the reference plots (RP1-9) and for different tile size (TS1-3).

Variables RP1 RP2 RP3 RP4 RP5 RP6 RP7 RP8 RP9 Average St. dev.
TERc (%) 87 89 87 88 100 85 89 85 78 88 6
ALSc_TS1 (%) 73 75 78 82 85 76 81 73 80 78 4
ALSc_TS2 (%) 85 83 88 90 84 86 92 85 75 85 5
ALSc_TS3 (%) 94 91 96 98 97 94 96 93 93 95 2

Tab. 4 - Differences and paired test between reference crown coverage (TERc) and
delineated crown coverage (ALSc) for different tile size (TS1-3).  (e%): relative mean
error; (se%): relative standard deviation of mean error; (RMSE%): relative root mean
square error; (*): null hypothesis is rejected (p<0.05). Sample size: m=9.

Compared 
variables

e% se% RMSE%
Normality Test Paired Test

W p-value t or Z p-value
TERc vs. ALSc_TS1 -11 6 12 0.887 0.187 5.347 0.001*
TERc vs. ALSc_TS2 -2 6 7 0.811 0.027* 0.770 0.441
TERc vs. ALSc_TS3 8 6 10 0.906 0.290 -4.213 0.003*
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Fig. 6 - Regres-
sion between

selected stand or
site characteris-
tics (x-axis) and

relative individual
difference (y-

axis) of treetops
detection based
on the proposed
algorithm in the

nine reference
plots. The regres-

sion functions,
coefficients of
determination

(R2) and F-test of
statistical signifi-

cance of the
regression model
(p-value) are dis-

played above
each graph.
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be considered when interpreting our find-
ings. First, the RPs selected for the assess-
ment included a broad range of site condi-
tion (including different  tree species mix-
tures, stand density and relief slopes). This
allowed the evaluation of the effect of site
variables on tree detection accuracy. How-
ever,  the  selected  RPs  reflected  a  more
complicated  stand  structure  than  com-
monly occurs in the study region, and this
could  have  affected  our  results.  Second,
the geo-dendrometric criteria included into
the tree position test decreased the num-
ber of detected trees, thus increasing the
underestimation rate.  On the other hand,
such  criteria  reduced  the  false  positive
detections, thus preserving the permissible
tree  and  stand  structure  and  generating
more realistic stands.

Although  the  accuracy  of  the  proposed
method suggests a limited applicability, the
analysis of detected and undetected trees
can  provide  a  different  perspective.  The
majority  of  undetected  trees  in  the  RPs
had  small  size  which  poorly  affects  the
assessment  of  the  total  stocking volume.
Indeed,  our  previous  research  suggested
that 32% of the undetected trees in the RPs
contained  only  11%  of  the  growing  stock
(Smelko et al.  2014). Therefore, when the
growing stock volume has to be assessed,
an  average  tree  detection  rate  of  65%
might not be thought as limiting the use of
the proposed algorithm.

Our results showed that the tile size had
significant effect on the detection perfor-
mance. We expect that testing the effect
of a broader range of non-integer tile sizes
could greatly improve the accuracy of the
method, providing also a better adaptation
to different stand structures and scanning
densities (Kaartinen et al. 2012). Moreover,
the  inclusion  of  tree  allometry  criteria  in
the method allow to preserve the permissi-
ble stand and tree structure. Such criteria
can be significantly improved by consider-
ing the specific morphometry of the domi-
nant  tree  species,  age  classes  and  other
tree and stand parameters. These parame-
ters can be subjected to calibration based
on  measured  data,  thus  improving  tree
detection performance with respect to par-
ticular  stand  conditions  or  specific  map-
ping objectives.

The  scanning  density  could  affect  tree
detection performances as well.  Kaartinen
& Hyyppä (2008), however, suggested that
scanning density has a lower effect on tree
detection that the extraction algorithm. In
this study, we used a density of 20 hits per
square meter, and we do not expect that
an increase in scanning density could fur-
ther improve the accuracy of detection of
dominant  and  co-dominant  trees.  How-
ever, a higher scanning density could allow
a deeper penetration through tree crowns,
thus  enhancing  the  detection  of  sup-
pressed trees growing under the canopy.

Additional  improvement  in  the accuracy
of tree detection can be attained by statis-
tical correction of the results. In this study,

a  significant  underestimation  in  the num-
ber of  tree detected was observed and a
bias correction could be applied. However,
such correction should be applied with cau-
tion,  particularly  when the  sample  size  is
small,  as  it  was  the  case  of  the  current
study.

Comparison with other studies
Unlike the proposed method, most stud-

ies used a canopy height model (CHM) as
input for tree detection algorithms (Kania
et  al.  2014).  Because  such  approach  re-
duces  the  size  of  the  initial  point  cloud,
computational time and demands on hard-
ware  are  reduced  as  well.  On  the  other
hand,  part  of  the  information supporting
tree detection is lost by transforming the
raw ALS  data  to  a  CHM.  Consequently,  a
point-based  approach  was  developed
which retrieves a part of point cloud data
linked  with  the  crown  segments,  which
were extracted from the CHM (Popescu &
Zhao 2008, Reitberger et al. 2009), or point
cloud  is  directly  used  to  detect  the  tree-
tops (Vega et al.  2014,  Ferraz et al.  2012).
The former approach still requires process-
ing ALS data to derive the CHM, while the
latter  approach  might  require  time-con-
suming  calculations.  The  algorithm  pro-
posed in this study was developed to com-
pensate  for  such  drawbacks.  Specifically,
the initial procedures optimize the number
of  points  via  tiling  and  height  restriction
operations.  Subsequently,  treetop  detec-
tion  and  tree  crown  delineation  are  per-
formed using the reduced and tiled point
cloud  in  the  original  3-dimensional  data
structure.

Most  of  the  commonly  used algorithms
for  tree  detection  from  ALS-derived  data
consider all  the local maxima detected as
actual trees (Kankare et al. 2013,  Yu et al.
2011).  Contrastingly,  our workflow applies
an additional verification based on the pre-
sented geo-dendrometric criteria. Such cri-
teria increase the probability that the local
maxima  represent  real  treetops  rather
than protruding branches,  multiple  termi-
nals  and other  morphological  patterns  of
tree crowns.

A  distinctive  feature  of  the  developed
algorithm is  the crown delineation proce-
dure. While other authors used mostly the
CHM-based crown delineation (Eysn et al.
2015), our method detects each crown by
gradually  adding crown parts  to  the  tree
top and testing the match to the required
dendrometric criteria at each iteration.

The  tree  detection  accuracy  attained  in
this  study  (65%)  is  approximately  in  the
middle of the range of tree detection accu-
racy (40-93%) reported by  Kaartinen et al.
(2012) in  an  international  benchmarking
study. Moreover, in this study the accuracy
of estimates of crown coverage was high
(± 7%),  and within the range reported for
similar  studies  (4-22%  – Holmgren  et  al.
2008).  Furthermore,  we  found  that  the
crowns  delineated  using  the  developed
algorithm  are  morphologically  similar  to

the 2D crown projection of field-measured
trees. All the above evidences support the
applicability  of  the proposed approach in
evaluating forest tree and stand attributes.

Conclusions
ALS-based mapping of forest structure is

an innovative component of  forest inven-
tory  efforts,  and  has  potential  to  signifi-
cantly reduce the laborious field works and
related costs. 

We proposed a new method which inte-
grate tree allometry criteria for detecting
individual  trees  and  delineating  their
crowns using ALS  data.  The method was
validated using 1332 trees from 9 reference
plots with heterogeneous stand structures.
A  significant  underestimation  rate  in  the
accuracy  of  tree  detection  was obtained,
while the accuracy of  estimates of crown
coverage was high and consistent with sim-
ilar studies. Based on our findings we con-
clude that ALS-based forest inventory can
provide reliable information only in particu-
lar  stand  conditions,  specifically  in  com-
mercial forests with simple structure, while
their  use  in  heterogeneous,  vertically  dif-
ferentiated forests still remain limited.

The implementation of  the proposed al-
gorithm in the freely-available and easy-to-
use reFLex software is intended to support
a  broader  use  of  ALS  data  and  promote
new  researches  aimed  at  improving  the
presented tree detection methods.
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