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Modelling dasometric attributes of mixed and uneven-aged forests using
Landsat-8 OLI spectral data in the Sierra Madre Occidental, Mexico
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Remote sensors can be used as a robust and effective means of monitoring iso-
lated or inaccessible forest sites. In the present study, the multivariate adap-
tive regression splines (MARS) technique was successfully applied to remotely
sensed data collected by the Landsat-8 satellite to estimate mean diameter at
breast height (R2  = 0.73), mean crown cover (R2  = 0.55), mean volume (R2  =
0.57) and total volume per plot (R2 = 0.41) in the forest monitoring sites. How-
ever, the spectral data yielded poor estimates of tree number per plot (R2  =
0.22), the mean height (R2 = 0.25) and the mean diameter at base (R2 = 0.38).
Seven spectral  bands (band 1 to band 7), six vegetation indexes and other
derived parameters (NDVI, SAVI, LAI, FPAR. ALB and ASR) and eight terrain vari-
ables derived from the digital elevation model (elevation, slope, aspect, plan
curvature,  profile  curvature,  transformed  aspect,  terrain  shape  index  and
wetness index) were used as predictors in the fitted models. To prevent over-
parameterization only some of the  predictor  variables  considered were in-
cluded in each model. The results indicate the MARS technique is potentially
suitable for estimating dasometric variables from using spectral data obtained
by the Landsat-8 OLI sensor.
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Introduction
The  Sierra  Madre  Occidental  (SMO)

mountain range is of great ecological inter-
est  due to  its  environmental  heterogene-
ity, which is attributed to the broad physio-
graphical and climatic diversity in the area.
Moreover, the SMO shelters uneven-aged
and species-rich pine oak forests that are
economically  important  ecosystems  for
Mexico and other parts of the world. The
SMO  crosses  several  states  in  western
Mexico,  including  the  state  of  Durango
(the  SMO  occupies  71.5%  of  the  surface
area of the state). The state covers a total
area of 12.3 million ha, of which 9.1 million
ha  (74.35%  of  the  land  in  the  state)  is
forestland managed by 11 Regional Forest
Management Units  (UMAFORES).  A  large

part  of  the  forestland  (4.9  million  ha)  is
occupied by temperate forest and is  sub-
jected  to  precipitation  levels  of  between
800  and  1200  mm  per  year,  with  frost
occurring in winter as a result of the combi-
nation  of  low  temperatures  and  humid
winds  from  the  Pacific  Ocean;  a  smaller
area of this land (0.5 million), affected by
warmer climate, is occupied by forest clas-
sified  as  rainforest  (SRNyMA-CONAFOR
2007).  The  state  of  Durango  generates
between 25% and 30% of the national tim-
ber production, producing a total of 1.5 mil-
lion m3 of  roundwood per  year,  and pro-
motes  forest  reserves  as  important
sources of environmental services (López-
Serrano et al. 2016).

Estimation  of  diverse  dasometric  vari-

ables  in  forest  stands  is  a  fundamental
aspect  of  forest  inventories.  Commercial
volume is  particularly  important  in  forest
management and is  valuable for  the con-
servation of diverse forest ecosystems and
for improving the economic productivity of
forests  (Gadow  et  al.  2004).  Other  stand
variables are also important in forest man-
agement,  such  as  diameter  at  breast
height,  total  height,  crown  cover,  basal
area and plant biomass. Stand variables are
usually measured on the ground by forest
inventory  teams  in  field  surveys  covering
large areas (Trotter et al.  1997); however,
such surveys are both expensive and time-
consuming (Gleason & Im 2011).

Use of remote sensors is a cost-effective
method of collecting data in large inacces-
sible  areas  and  provides  an  alternative
source of data for extrapolating and esti-
mating  forest  variables  (Franklin  et  al.
2003,  Poulain  et  al.  2010).  The  data  ob-
tained  can  be  rapidly  updated  and  com-
pared with existing data, and the method
can be easily integrated with Geographical
Information Systems. These methods have
been  successfully  combined  in  several
studies, and statistically significant correla-
tions  between  the  remotely-sensed  data
(captured by Landsat satellite sensors) and
field-measured  data  have  been  reported
for diameter at breast height, age and total
height  (Donoghue  et  al.  2004),  volume
(Hall  et  al.  2006,  Poulain et  al.  2010) and
biomass (Luther et al.  2006,  Ji et al. 2012,
Zhang et al. 2014). The aim of the present
study was to analyze the relationship be-
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tween a set of field-measured dasometric
variables and spectral data obtained by the
Landsat-8  OLI  (Operational  Land  Imager)
sensor and data derived from a digital ele-
vation model, aimed at estimating the total
number  of  trees  per  plot,  crown  cover,
mean  diameter  at  base  (0.30  m),  mean
diameter  at breast  height  (1.30 m),  mean
height, mean volume and total volume per
plot in a mixed uneven-aged forests in the
Sierra Madre Occidental.

Material and methods

Study area
The study was carried out in the Ejido La

Victoria (surface area: 10,810 ha), located in
the Sierra Madre Occidental in the munici-
pality of Pueblo Nuevo, state of Durango,
Mexico  (Fig.  1).  Site  elevation  ranges  be-
tween  2245 and 2870 m above sea level,
according  to  the  data  obtained  from  the
digital  elevation  model  (DEM)  developed

by the National Institute of Geography and
Statistics of Mexico (INEGI 2014). The for-
ests in the study area show a rich biodiver-
sity and include at least 12 coniferous tree
species (of which 10 are Pinus species) and
5 species of  Quercus.  The dominant types
of vegetation in the area are mixed conifer
forest and pine-oak forest (Wehenkel et al.
2011,  González-Elizondo  et  al.  2012).  The
main species present are:  Pinus cooperi, P.
durangensis, P. engelmannii, P. leiophylla, P.
strobiformis, P. teocote, P. herrerae, Junipe-
rus deppeana, Quercus sideroxil and Q. cras-
sifolia (Martínez-Antúnez et al. 2015).

Field sampling
A systematic sampling method (1 × 1 km

between  plots)  was  used  to  locate  the
sampling plots in the study area. In total,
83 circular sampling plots each of surface
area 1000 m2 were established.  The plots
were georeferenced relative to a reference
system (WGS 84 Datum / UTM zone 13N).
The plot data were obtained with the aid of
a  submeter  GNSS  receiver,  tree  calipers
(Haglof, Sweden), hypsometer (Vertex IV®,
Haglof, Sweden) and metric tape. The fol-
lowing  variables  were  measured  in  each
plot, taking into account all the trees with
diameter at breast height (DBH) larger than
5  cm:  tree  number  (N),  diameter  at  base
(DB in cm, measured at 0.30 m above the
ground),  DBH (in cm, measured at 1.30 m
above the ground), total height (HT in m)
and crown diameter (CD in m). The volume
(V in m3) per plot was estimated using spe-
cific  allometric  equations  developed  by
Corral-Rivas  et  al.  (2007) for  the  same
study area; the descriptive statistics corre-
sponding  to  the  response  variables  are
shown in Tab. 1.

Datasets

Source of spectral data
The  image  used  in  the  study  was  cap-

tured  by  the  Landsat-8  OLI  sensor
(LC80310442014018LGN00)  and  supplied
by  the  USGS  Global  Visualization  Viewer
Server (http://glovis.usgs.gov/).  The image
was captured at  about  the same time as
the  field  sampling was carried  out  (Janu-
ary, 2014). The images were obtained as a
L1T level product (i.e., they were geometri-
cally corrected with ground control points
and the DEM). The satellite image was digi-
tally  preprocessed  by  radiometric  correc-
tion  and  atmospheric  and  topographic
techniques,  following  the  procedures  es-
tablished  in  the  ATCOR3® module  (Atcor
for  Erdas  Imagine  –  ERDAS  2013)  devel-
oped  for  mountainous  areas  and  imple-
mented with ERDAS® IMAGINE® 2013 soft-
ware (ERDAS 2013). The digital levels (DL)
of  each  of  the  bands  (Tab.  2)  were  con-
verted  to  surface  reflectance  values  by
reading  the  model  parameters  and  the
orbit of the geometrical satellites included
in the image metadata. Bands 1 to 7 (B1, B2,
B3,  B4,  B5,  B6 and  B7)  of  Landsat-8  OLI
were used in the present study.
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Fig. 1 -  Maps showing the location of the study area and sample plots used in the
study:  (right,  top to bottom) the State of  Durango in Mexico;  the municipality of
Pueblo Nuevo in the State of  Durango; the Ejido La Victoria in the municipality of
Pueblo Nuevo. The area covered by the Ejido La Victoria is outlined in the large inset.

Tab. 1 - Descriptive statistics for the response variables in each of 83 plots (of surface
area, 1000 m2). (STD): standard deviation.

Stand variable Mean STD Min Max
Tree number per plot (N) 79.53 58.02 7.00 430.00
Mean diameter at base 0.30 m (cm - DB mean) 21.40 6.41 10.79 41.24
Mean diameter at breast height 1.30 m (cm - DBH 
mean)

17.96 5.79 8.05 35.45

Mean height (m - H mean) 10.95 3.17 6.01 23.80
Mean crown diameter (m - CD mean) 3.85 0.91 1.88 6.54
Mean volume (m3 - V mean) 0.42 0.30 0.06 1.68
Total volume (m3) per plot (TV) 24.98 11.78 1.31 67.14

Tab. 2 - Spectral bands, wavelength, spatial resolution and abbreviated name of the
Landsat-8 OLI sensor.

Band number
Wavelength

(µm)
Spatial r
esolution Abbreviation

Band 1 - Coastal aerosol 0.433-0.453 30 m B1
Band 2 - Blue 0.450-0.515 30 m B2
Band 3 - Green 0.525-0.600 30 m B3
Band 4 - Red 0.630-0.680 30 m B4
Band 5 - Near Infrared (NIR) 0.845-0.885 30 m B5
Band 6 - Short-Wave Infrared (SWIR) 1 1.560-1.660 30 m B6
Band 7 - Short-Wave Infrared (SWIR) 2 2.100-2.300 30 m B7
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Landsat-8 OLI spectral data for modelling forest dasometric attributes

A  number  of  vegetation  indexes  and
other derived parameters (normalized dif-
ference  vegetation  index,  NDVI;  soil  ad-
justed vegetation index,  SAVI; leaf area in-
dex,  LAI; fraction of photosynthetically ac-
tive radiation, FPAR; albedo, ALB; absorbed
shortwave solar radiation, ASR) were com-
puted from the atmospherically and topo-
graphically  corrected  image  bands  and
then included in the stand variables estima-
tion  models  for  evaluation  as  possible
regressor variables (Tab. S1 in Supplemen-
tary material).

Terrain variables
These variables have influence on forest

species  composition,  tree  height  growth,
and  other  forest  stand  variables  (McNab
1989,  Roberts & Cooper 1989). First order
variables  included:  elevation (DEM),  slope
(SLOPE), transformed aspect (TRASP), pro-
file  curvature (PROFCURV),  plan curvature
(PLANCURV)  and  curvature  (CURV);  and
second order variables were: terrain shape
index  (TERRSHPIN2)  and  wetness  index
(WETIND). Terrain parameters were gener-
ated in the software ArcGIS 10® (ESRI 2012),
with  a  5×5  low  pass  filtered  DEM  (INEGI
2014) and included as  candidate variables
in  the  models  (Tab.  S2  in  Supplementary
material). These parameters are potentially
related  to  key  features  affecting  forest
stand development, such as overall climate
characteristics,  insolation,  evapotranspira-
tion,  run-off,  infiltration,  wind  exposure
and site productivity. Some of these terrain
features  are  widely  used  in  hydrological,
geomorphological  and  ecological  studies
(Wilson  &  Gallant  2000),  whereas  others
are  used  more  specifically  for  vegetation
and  forest  assessment  (McNab  1989,  Ro-
berts & Cooper 1989).

Dataset integration
The  sample  plots  were  geopositioned

with the aim of extracting the pixel value
average  with  an  associated  buffer  of  18-
meter  radius  for  geolocalization  of  the
plots. The values were extracted using the
raster package available in the R statistical
software  (R  Core  Team  2015).  Finally,  a
database was constructed with the mean
stand  variables  values  for  each  plot:  the
corrected bands of the Landsat-8 OLI sen-
sor  (7  bands),  the  vegetation  indexes  (6
indexes) and the terrain variables derived
from the DEM (8 variables).

Statistical analysis
As  the  Shapiro-Wilks  test  revealed  that

the data were not normally distributed, the
multivariate  adaptive  regression  splines
(MARS) technique was used for model con-
struction. The MARS technique is an inno-
vative,  flexible  method  that  constructs
models  for  continuous,  categorical  or  bi-
nary-type  dependent  and/or  independent
variables. It is a non-parametric regression
technique  based  on  constructing  flexible
models by fitting data to linear regressions
in segments, combination of which gener-

ates  local  models  where  the  relationship
between the predictive and response vari-
ables may be linear or non-linear and which
also incorporate interactions between vari-
ables. Each segment of the regression line
represents a stretch of linear response to
the variable and is denominated the basic
function;  the  final  model  consists  of  the
entire  set  of  basic  functions.  The  model
can  be  represented  so  that  it  separately
identifies additive contributions and those
associated with different multivariate inter-
actions (Friedman 1991). The general form
of  the  MARS  non  parametric  regression
model,  formulated  on  the  dependent  y
variable and the x predictors, is as follows
(eqn. 1):

where  ε is  the  error,  and  f (x)  is  the
unknown  regression  function,  derived  as
follows (eqn. 2):

where β0 is the intercept of the model, Bm

(x) is the mth basis function, βm is the coeffi-
cient of the mth basis function, and M is the
number  of  basis  functions  in  the  model.
Each basis function Bm(x) takes one of the
following two forms: (i) a hinge function of
the form max(0, x-k) or max(0, k-x), where
k is a constant value; (ii) a product of two
or more hinge functions, which can there-
fore model the interaction between two or
more predictors (x).

In  this  study,  MARS  analysis  was  per-
formed using the “earth” package in  R (R
Core  Team  2015).  To  improve  predictions
and prevent over-fitting, MARS uses a mo-
dified form of the “cross-validation meth-
od” (GCV – Vidoli 2011). GCV is an approxi-
mation of  the error that  would be deter-
mined by leave-one-out validation and con-
siders  both  the  residual  error  and  the
model  complexity.  Therefore,  the optimal
model  is  that  yielding  the  lowest  GCV
(eqn. 3):

where yi represents the observed values of
the dependent variable, n is the number of
observations, fm(xi) is the MARS model with
M basis  functions,  xi represents  the  ob-
served values of the predictors included in
the MARS model and  pM is the number of
parameters of the MARS model.

The importance of the measurement vari-
able  was  also  considered,  to  take  into
account  whether  model  information  was
used  or  not.  Use  of  the  previously  men-
tioned  GCV parameter, together with the
parameters N  of the subsets (Nsub) and the
residual  sum of  squares  (RSS),  yields  reli-
able results. The Nsub criterion considers the
number of model subsets that include the
variable,  i.e.,  one  subset  for  each  model

size from one up to the selected model size
(in  the final  pruned model).  The wrapper
model utilizes the performance of the algo-
rithm MARS to determine which features
should  be  selected.  The  subset  that  pro-
duces  the  highest  overall  accuracy  is
deemed the best. For the RSS criterion, the
decrease in  the  RSS is  first  calculated for
each subset relative to the previous subset.
For each variable, the decreases are then
summed over all subsets that include that
variable (Alonso-Fernández et al. 2014).

Three criteria were used to evaluate the
model performance: (i) the determination
coefficient (R2) as a measure of  how well
the  model  fits  the  training  data;  (ii)  the
generalized  determination  coefficient
(GR2), which is based on the  GCV statistic
and the root mean square error (RMSE) for
each model to provide a generalization of
the predictive power of the model; and (iii)
the common method of k-fold cross-valida-
tion (for  k  = 2 to 10 folds), in which error
statistics  are calculated across  all  k trials.
Additional  information  on  MARS  can  be
found in  Friedman (1991) and  Hastie et al.
(2009)

Cross validation was used with the aim of
defining a dataset to test the model in the
training phase, to minimize problems such
as overfitting and to predict how the mod-
el will perform with an independent data-
set. This provides a good indication of how
well the classifier will perform with unseen
data and also indicates the degree of vari-
ability in the k-fold cross-validation results.

For the purpose of comparison, multiple
linear  regression  (MLR)  was  also  carried
out to compare how it performs relative to
the  MARS  technique  for  modeling  stand
variables in the study area. MLR is the tech-
nique most commonly used in this kind of
studies, as it is easy to understand and wi-
dely  used  in  most  scientific  disciplines
(Fassnacht et al. 2014). Stepwise selection
(forward and backward) was performed to
select the most informative variables that
were  included  in  the  model  using  the
stepAIC  function  and  the  exact  Akaike’s
information  criterion  (AIC)  in  the  MASS
package (Venables & Ripley 2002). The aim
of this procedure was to identify the model
with the smallest AIC by removing or ad-
ding predictors.

The  equations  obtained  with  the  MARS
technique (R2 and RMSE) were finally used
to generate a map of the stand variables by
means of the map algebra and conditional
tools of the GIS package ArcGIS 10® (ESRI
2012).

Results
Tab. 3 shows the results produced by the

MLR and MARS techniques for each of the
dasometric  variables  considered  in  the
study.  Although  MARS  generally  per-
formed best, MLR yielded better prediction
of the H mean variable.

Tab.  4 shows  the  results  obtained  with
the MARS models that performed best for
estimating the dasometric variables consid-
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∑
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ered  in  each  plot  of  mixed  and  uneven
aged forest plot in the study area.

According  to  the  selection  criteria,  the
model used to estimate the mean diameter
at breast height (1.30 m), mean volume and
the mean crown diameter were those that
performed best with the training data set
(i.e., highest R2 = 0.73, 0.57 and 0.55;  GR2 =
0.26,  0.34  and  0.30;  and  lowest  RMSE  =

3.01 cm, 0.20 m3 and 0.61 m; 16.79%, 47.39%
and 15.83% of the mean variables,  respec-
tively).  The  model  used  to  estimate  the
total volume per plot also performed rea-
sonably  well  (R2 =  0.41,  GR2 =  0.31,  and
RMSE = 9.00 m3; 36.02% of the mean total
volume per plot). The model used to esti-
mate the number of trees per plot yielded
the poorest fit (R2 = 0.22,  GR2 = 0.04, with

RMSE = 51.01; 64.14% of the mean number
of trees per plot)  and the model  used to
estimate the mean height also provided a
poor fit to the training data set (R2 = 0.25,
GR2 = 0.21 and RMSE = 2.73 m; 24.96% of the
mean height).  Thus a large difference be-
tween GR2 and R2 indicates a severely over-
parametrized model, i.e., a model that may
show a good fit to the training dataset, but
would not be generally applicable.

The  predictor  variables  (spectral  bands
and  indices  and  topographic  variables)
used to construct the basic functions can
be evaluated after fitting a MARS model to
the different dasometric variables. The pa-
rameter estimates of the MARS models fit-
ted to the complete database are shown in
Tab. 5.

The  number  of  the  predictor  variables
and  the  percentage  contribution  to  the
predictive  power  of  the  models  varied
widely  in  the  models  fitted  (Fig.  2).  For
instance, the following variables were the
most  important  (100%  of  GCV)  in  some
models: slope (SLOPE), for estimating num-
ber of trees per plot; soil adjusted vegeta-
tion  index  (SAVI),  for  estimating  mean
diameter at base per plot, mean total tree
height,  mean  crown  diameter  and  mean
volume; and the green band (B3) and short
wave infrared 2  band (B7)  for  estimating
the  mean  diameter  at  breast  height  and
the total volume per plot. Likewise, the fol-
lowing  variables  contributed  least  to  the
predictive  ability  of  the  models  (<25%  of
GCV): fraction of photosynthetically active
radiation (FPAR), for estimating number of
trees per plot; albedo (ALB) for estimating
the mean diameter  at  base and the total
volume per  plot;  the  blue  band  (B2),  for
estimating  the  mean  diameter  at  breast
height, and  DEM, wetness index (WETIND)
and the red band (B4), for estimating the
mean volume.

Fig. 3 shows the variation in  k-fold cross-
validation (k =  2  to  10),  which is  used to
visualize problems such as overfitting. And
finally, the spatial distribution of the daso-
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Tab. 3 - Comparison of the best MLR and MARS model predicting seven tree stand
attributes  based on the coefficient  of  determination (R2),  root  mean square error
(RMSE) and RMSE percent. (N): the number of trees per plot; (DB mean): mean diame-
ter at 0.30 m (cm); (DBH mean): mean diameter at 1.30 m (cm); (H mean): mean height
(m); (CD mean): mean crown diameter (m); (V mean): mean volume (m3); (TV): total
volume (m3) per plot; (MLR): MLR technique; (MARS): MARS technique.

Variable
MLR MARS
Predictors R2 RMSE %RMSE Predictors R2 RMSE %RMSE

N 5 0.18 54.20 68.15 4 0.22 51.01 64.14

DB mean 6 0.33 5.47 25.56 3 0.38 5.02 23.48

DBH mean 6 0.31 4.99 27.79 10 0.73 3.01 16.79

H mean 7 0.36 2.65 24.20 1 0.25 2.73 24.96

CD mean 6 0.32 0.78 20.31 8 0.55 0.61 15.83

V mean 7 0.30 0.27 64.09 7 0.57 0.20 47.39

TV 5 0.40 9.39 37.59 3 0.41 9.00 36.02
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Tab. 4 - MARS model selection criteria for dasometric variables considered. (N): num-
ber of trees per plot; (DB mean): mean diameter at 0.30 m (cm); (DBH mean): mean
diameter at 1.30 m (cm); (H mean): mean height (m); (CD mean): mean crown diame-
ter (m); (V mean): mean volume (m3); (TV): total volume (m3) per plot; (GCV): general-
ized cross-validation; (RSS): residual sum of squares; (GR2): generalized coefficient of
determination.

Variable Number
of terms

GCV RSS GR2

N 5 of 22 3273.51 215972.50 0.04

BD mean 6 of 34 33.55 2095.71 0.19

DBH mean 17 of 34 26.66 754.26 0.26

H mean 2 of 36 8.04 619.94 0.21

CD mean 9 of 21 0.59 30.85 0.30

V mean 9 of 34 0.06 3.24 0.34

TV 4 of 22 96.60 6722.15 0.31

Tab. 5 - Models obtained for the total database by MARS technique. (N): number of trees per plot; (DB mean): mean diameter at
base (0.30 m, in cm); (DBH mean): mean diameter at breast height (1.30 m, in cm); (H mean): mean height (m); (CD mean): mean of
the crown diameter (m); (V mean): mean volume (m3); (TV): total volume (m3) per plot.

Variable MARS models

N +101.0029 – 0.2084·max(0.1479-B5) + 0.19820·max(0.695-FPAR) – 2.5521·max(0,ALB-73) + 11.676·max(0.5.495-SLOPE)

BD mean +23.7517 + 0.0926·max(0.310-B3) – 0.0418·max(0,B3-310) + 0.1064·max(0.283-SAVI) + 0.1814·max(0,SAVI-250) - 
0.3544·max(0.97-ALB)

DBH 
mean

+28.5076 – 0.2359·max(0.105-B2) + 0.1826·max(0,B3-310) + 0.1356·max(0,B4-354) + 0.9940·max(0,SAVI-208) - 
0.2823·max(SAVI-214) + 1.9544·max(0,SAVI-218) – 2.9222·max(0,ALB-67) + 3.2205·max(0,ALB-70) – 0.2655·max(0,ALB-97) - 
0.0347·max(0.2646-DEM) – 0.0319·max(0,DEM-2646) – 7.2031·max(0,CURV+0.463) – 29.5239·max(0,CURV-0) + 
41.0845·max(0,PLANCURV-0.107) + 58.5195·max(0,-0.092-PROFCURV) - 1.2622·max(0,WETIND-8.222)

H mean +10.0624 + 0.0950·max(0,SAVI-238)

CD mean +3.4718-0.0220·max(0,B3-348) + 0.0210·max(0,B4-387) + 0.0083·max(0.1247-B5) + 0.0122·max(0,B7-730) + 
0.0255·max(0,SAVI-238) – 0.1455·max(0,ALB-97) + 2.100·max(0,-0.185-PROFCURV) - 0.1352·max(0.5.495-SLOPE)

V mean +0.1153 + 0.0061·max(0.280-B3) – 0.0060·max(0,B3-289) + 0.0045·max(0,B4-236) + 0.0174·max(0,SAVI-255) – 
0.0123·max(0,DEM-2796) – 0.4713·max(0,CURV-0) + 1.9043·max(0,-0.1851-PROFCURV) - 0.1027·max(0,WETIND-10.51)

TV +29.4140-0.0513·max(0,B7-474) + 0.4461·max(0,SAVI-266) + 0.4821·max(0,ALB-97)
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Fig. 3 - Variations in the goodness of fit statistics obtained by applying the cross-validation technique (nfolds = 2-10) to the MARS
models.
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Fig. 2 -  Importance and selection of predictor variables in the multivariate adaptive regression splines (MARS) models for each
radiometric correction algorithm considered.
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metric variables in the study area obtained
by application of the MARS models (Tab. 5)
is shown in Fig. 4.

Discussion
Predictive  modeling  is  not  an  exact  sci-

ence (Frescino & Gretchen 2002), and mod-
el  performance can be influenced by  the
method of statistical analysis,  topographi-
cal factors (slope, exposure and elevation)
and forest structure (proportion of young
and mature trees, species and type of silvi-
cultural management). The results obtain-
ed in this and other studies (Moisen & Fres-
cino 2002, Zheng et al. 2009, Aertsen et al.
2010) were based on nonparametric tech-
niques.  In  this  case,  the MARS technique
yielded significantly more accurate predic-
tions than the MLR excepting the variable
H  mean as  a  consequence of  the smaller
number of predictors (1 of 21) in the MARS
model.

However, the use of very high resolution
sensors  can  improve  prediction  of  forest
structural parameters by linear regression
analysis, as reported by Ozdemir & Karnieli
(2011).  These  authors  used  multispectral
data (WordView-2) and a stepwise regres-
sion  technique  to  predict  the  number  of
trees per hectare (R2 = 0.38, RMSE = 109.56
tree ha-1; 28.45%) and total volume per plot
(R2 = 0.42, RMSE = 27.18 m3 ha-1; 44.20%) in a
plantation forest in Israel.

Trotter et al. (1997) obtained high good-

ness-of-fit  values  (R2 ≥  0.85  and  RMSE  =
39.00 m3 ha-1) for band 4, and for bands 3
and 4 of  Landsat  TM satellite  images  for
estimating  timber  volume  by  simple  and
multiple linear regression methods, respec-
tively.  In  a  study monitoring growth of  a
young forest  plantation in  UK,  they used
generalized linear models (GLM) with loga-
rithmic  links  and  normal  errors,  and
obtained higher values (R2 = 0.85 and RMSE
= 0.88 m; 28.38%) for the mean height, and
lower  values  for  the  diameter  at  breast
height  (R2 =  0.36  and  RMSE =  2.15  cm;
27.24%) and for density (R2 = 0.03 and RMSE
=  3.260.59  tree  ha-1;  98.62%)  than  those
obtained in the present study. The differ-
ences  in  the  results  can  be  explained  by
the more heterogeneous conditions of the
native vegetation in the present study area
and, in the case of height, the higher R2 val-
ues obtained in UK may also be related to
the  larger  latitude  in  this  country,  which
implies longer shadows at the time of the
Landsat overpass, making it easier to esti-
mate tree heights (Donoghue et al. 2004).
In a study modeling forest stand structure
attributes  by  multivariate  regression  and
discriminant  function  analysis,  Hall  et  al.
(2006) obtained  higher  error  values  for
height and crown cover (R2 = 0.57 and 0.65,
and  RMSE = 12.0 and 2.8 m, respectively).
Coulston  et  al.  (2012) estimated  crown
cover  in  forests  in  Utah  and  Michigan
(USA)  by  using  a  beta  regression  model

and  the  random  forest  algorithm,  and
obtained also high error values (R2 = 0.65
and  0.69  and  RMSE  =  0.87  and  0.89  m,
respectively).

Cruz-Leyva  et  al.  (2010) modeled  even-
aged  Pinus  patula and  P.  teocote forest
stand variables in Hidalgo,  Mexico by GIS
variables  and  reflectance  data  derived
from  a  multispectral  SPOT  5  image  and
multiple linear regression. The volume was
significantly  related  to  tree  crown  cover,
leaf  area  index  (LAI),  slope,  elevation,
mean annual temperature, maximum tem-
perature of warmest month, mean annual
precipitation,  and  precipitation  of  the
wettest  quarter  (R2 =  0.72  and  0.88,  p <
0.001).

Li et al. (2011) used stepwise linear regres-
sion and regression tree analysis, together
with cross validation methods, to estimate
height in young forests and obtained the
following  values  for  the  first  and  second
modeling techniques, respectively: R2 = 0.15
and 0.19 and  RMSD (root mean square of
the difference) = 10.32 and 6.07 (m) for the
first group of variables by combining bands
1-5  and  7  to  obtain  the  integrated  forest
index  (IFI),  a  measure  of  the  probability
that a pixel corresponds to forest, the nor-
malized difference vegetation index (NDVI)
and the normalized burn ratio index (NBRI).
The same authors obtained  R2 = 0.88 and
0.89 and RMSD = 2.42 and 2.13 (m) for the
second group of variables (age since distur-
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Fig. 4 - Spatial distribu-
tion of the stand vari-
ables in the study area, 
obtained by application 
of the MARS technique.
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bance,  derived  from  Vegetation  Change
Tracker  [VCT]  and  Landsat  time  series
stacks  [LTSS]  disturbance year  map),  and
R2 =  0.69  and 0.68 with  RMSD =3.85 and
3.73 (m) successively for the third group of
variables (combining accumulated indexes:
IFI, NDVI and NBRI).

The null contribution of the  NDVI (Fig. 2)
can be attributed to the significant associa-
tion between this index and both the leaf
area  index  and  the  fraction  of  photosyn-
thetically active radiation intercepted (Law
& Waring 1994). The values of  these vari-
ables are low in winter, which is when the
satellite image was captured and the field
sampling was carried out  for  the present
study.

Some estimates are difficult to compare,
because  of  differences  in  the  sources  of
data,  estimation methods used,  period of
data compilation and large differences be-
tween the study areas (Zhang et al. 2014).

The top performing model (R2) was that
used  to  estimate  the  mean  diameter  at
breast height, probably because this model
included  the  largest  number  of  indepen-
dent variables (Tab. 4), indicating problems
of overfitting (GR2) in the training data set
(Fig.  3).  The  remaining  unexplained  vari-
ance in the spatial patterns may be related
to  the  high  heterogeneity  of  the  depen-
dent variables (García-Martín et al.  2006),
due to the uneven-aged and tree species-
rich structure of the Pueblo Nuevo forests
in Durango.  We therefore recommend in-
creasing  the  number  of  observations  in
order to decrease the possibility of occur-
rence of this effect.

Considering  the  advantages  and  limita-
tions of  different remote sensing images,
the  medium-resolution  (pixel  size,  30  m)
Landsat  series  is  one  of  the  most  widely
used  for  estimating  dasometric  variables
(Agarwal  et  al.  2014,  Pflugmacher  et  al.
2014,  Dube  &  Mutanga  2015,  Zhu  &  Liu
2015). The advantages of using the Landsat
series  are  that  numerous  historical  spa-
tiotemporal archives are available and that
the sensor is cheaper and more accessible
than  high  resolution  sensors,  particularly
for analysis of large areas (Wu et al. 2016).

Conclusions
We conclude that  the spectral  bands of

the Lansat-8 OLI sensor can be used to esti-
mate  four  of  the  seven  stand  variables
(mean  diameter  at  breast  height,  mean
crown  diameter,  mean  volume  and  total
volume per plot) in the study region. Fur-
thermore, the inclusion of aggregated val-
ues of vegetation indexes and terrain vari-
ables  derived  from  the  DEM  contributed
significantly  to  increasing  the  the  good-
ness-of-fit of the models.

Multivariate  adaptive  regression  splines
(MARS) models are more flexible than lin-
ear  regression models.  Application of  the
MARS  technique  facilitated  handling  and
interpretation  of  large  amounts  of  data
representing complex structures. The pre-
dictors  thus  obtained  for  the  study  area

were accurate and the method proved suit-
able for modeling a large number of predic-
tive variables.
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