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Chemometric technique performances in predicting forest soil chemical
and biological properties from UV-Vis-NIR reflectance spectra with 
small, high dimensional datasets

Alessandro Bellino (1), Claudio 
Colombo (2), Paola Iovieno (3), Anna 
Alfani (1), Giuseppe Palumbo (2), 
Daniela Baldantoni (1)

Chemometric analysis  applied to diffuse reflectance spectroscopy is increa-
singly proposed as an effective and accurate methodology to predict soil physi-
cal, chemical and biological properties. Its effectiveness, however, largely va-
ries in relation to the calibration techniques and the specific soil properties. In
addition, the calibration of UV-Vis-NIR spectra usually requires large datasets,
and the identification of techniques suitable to deal with small sample sizes
and high dimensionality problems is a primary challenge. In order to investiga-
te the predictability of many soil chemical and biological properties from a
small dataset and to identify the most suitable techniques to deal with this
type of problems, we analysed 20 top soil samples of three different forests
(Fagus  sylvatica,  Quercus  cerris and  Quercus  ilex)  in  southern  Apennines
(Italy).  Diffuse  reflectance  spectra  were  recorded  in  the  UV-Vis-NIR  range
(200-2500  nm)  and  22  chemical  and  biological  properties  were  analysed.
Three different calibration techniques were tested, namely the Partial Least
Square Regression (PLSR), the combinations wavelet transformation/Elastic net
and wavelet transformation/Supervised Principal Component (SPC) regression/
Least Absolute Shrinkage and Selection Operator (LASSO), a kind of precondi-
tioned LASSO. Calibration techniques were applied to both raw spectra and
spectra subjected to wavelet shrinkage filtering, in order to evaluate the influ-
ence on predictions of spectra denoising.  Overall,  SPC/LASSO outperformed
the other techniques with both raw and denoised spectra.  Elastic net pro-
duced heterogeneous results, but outperformed SPC/LASSO for total organic
carbon, whereas PLSR produced the worst results. Spectra denoising improved
the prediction accuracy of many parameters, but worsen the predictions in
some cases. Our approach highlighted that: (i) SPC/LASSO (and Elastic net in
the case of total organic carbon) is especially suitable to calibrate spectra in
the case of small, high dimensional datasets; and (ii) spectra denoising could
be an effective technique to improve calibration results.

Keywords: Elastic Net, PLSR, SPC/LASSO, Wavelets, Diffuse Reflectance Spec-
troscopy, Sample Size

Introduction
Monitoring  of  soil  property  dynamics

needs quick and efficient systems avoiding
long procedures involved in traditional me-
thods.  Diffuse  Reflectance  Spectroscopy

(DRS)  could  address  these  needs  by  pre-
dicting soil  properties using their spectro-
scopic signatures in the ultraviolet-visible-
infrared (UV-Vis-IR) domain. Various appro-
aches have been tested to relate UV-Vis-IR

spectra to many soil  parameters,  such as
soil  organic  matter  (SOM),  total  organic
carbon (TOC), total carbon, total nitrogen,
texture,  as  well  as  biological  properties
(Baumgardner et al. 1985, Henderson et al.
1992,  Ben-Dor  2002,  Viscarra Rossel  et  al.
2006a,  Zornoza et al. 2008,  Yang & Moua-
zen 2012,  Heinze et al. 2013,  Conforti et al.
2015).

Two problems faced in analysing spectral
data are their  functional  nature and their
dimensionality.  Indeed, spectra can be re-
presented as functions of the wavelength
xi(λ),  with  possibly  thousands  of  values,
especially  for  UV-Vis-IR spectra.  A way to
deal with functional variables in the case of
high dimensional data, is to employ some
regression penalties that take into account
the ordering of the data, as in fused LASSO
or trend filtering.  These techniques,  how-
ever,  led  to  quadratic  programming  pro-
blems, that are computationally expensive
and difficult to solve when dealing with a
huge number of variables (Tibshirani et al.
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2005). Other methods, such as Partial Least
Squares  Regression  (PLSR)  and  Principal
Component  Regression  (PCR)  overcome
these problems by deriving a small number
of  linear  combinations  of  the  predictors
and using these instead of the original va-
riables to predict the outcome.

These techniques gained broad populari-
ty to analyse spectral data and have widely
been used to predict many soil properties
from  reflectance  spectra  (Viscarra  Rossel
et al. 2006b,  Zimmerman et al. 2007,  Con-
forti  et  al.  2015).  As  usual  in  the  case  of
high dimensional  data,  such methods  ge-
nerally  need  a  great  number  of  observa-
tions,  splitted  into  a  training  set  to  cali-
brate the models, a validation set to esti-
mate the prediction error for model selec-
tion, and a test set to assess the genera-
lization error of the chosen model (Hastie
et al. 2008).

A high number  of  observations  is  gene-
rally difficult to obtain in ecological studies,
and  techniques  like  cross-validation  (CV)
can be used to overcome the problem of
small  sample sizes in assessing prediction
error. CV randomly splits the dataset into a
n number of folds and uses n - 1 folds as the
training set and the last one as a validation
set,  repeating  the  operations  until  every
fold  is  considered  once  as  the  validation
set (Hastie et al. 2008).

An alternative way to analyse spectra  is
to represent them by coefficients in a basis
function in λ, such as wavelets, splines or
Fourier  bases  (Hastie  et  al.  2008).  Coeffi-
cients  can  be  then  used  as  predictors  in
various forms of regression, such as Gene-
ralized  Linear  Models  (GLM),  Least  Abso-
lute  Shrinkage  and  Selection  Operator
(LASSO)  or  even  PCR  and  PLSR.  This  ap-
proach solves the problem by two steps: (i)
addressing  the  functional  nature  of  the
spectra; and (ii) finding a function to relate
the coefficients to the outcome. Regarding
the first  step,  wavelets  seem to be espe-
cially suitable to be used in spectra decom-
position due  to  their  multiresolution  pro-
perty  which  allow  to  model  at  the  same
time both the local and the global features
of the spectra. In addition, wavelet decom-
position usually produces coefficients with
reduced correlations (Nason 2008) in res-
pect to the original wavelengths, which aid
in reducing the multicollinearity problems

in  high-dimensional  regressions.  Lark  &
Webster  (1999) provided  a  detailed  des-
cription of the use of wavelets in soil scien-
ce, and  Viscarra Rossel & Lark (2009) em-
ployed  wavelet  decomposition  of  visible-
near and mid infrared spectra, followed by
various  regression  techniques,  to  predict
TOC and clay content. The second step has
the following goals:  (i)  to predict the de-
pendent  variable;  and  (ii)  to  find  a  suffi-
cient  and possibly small  subset  of  predic-
tors.  The latter goal  has particular impor-
tance  for  high  dimensional  regressions,
where  few  variables  which  correctly  pre-
dict the true response have to be identified
among thousands of possible predictors. In
this context, techniques such as the Baye-
sian variable selection approaches (Brown
et  al.  2001)  or  the Minimum  Average Va-
riance  Estimation  (MAVE  -  Amato  et  al.
2006),  as  well  as  methods  that  produce
sparse solutions like the LASSO (Zhao et al.
2013), could be used to reduce the dimen-
sionality of the data. Most regression tech-
niques  try  to  address  both  goals  at  the
same time,  although  this  is  not  prerequi-
site:  Paul et al. (2008) recently proposed a
new approach – called “pre-conditioning”
– that uses two different methods to ad-
dress the relative goals. Basically, a compu-
tational technique – usually the Supervised
Principal Component (SPC) regression – is
employed to predict the true response and
then the predicted values are used in a L1-
regularized regression,  like the LASSO,  to
produce  a  sparse  solution  (Paul  et  al.
2008). In this way, the advantages of the
SPC with its low prediction errors and the
sparsity  of  the  LASSO solutions  are  com-
bined (Hastie et al. 2008, Paul et al. 2008).

In  this  paper,  an  attempt  to  predict  va-
rious  chemical  and  biological  properties
from  diffuse  reflectance  spectra  with  a
small dataset was made using three tech-
niques in order to test their relative power-
fulness. The first two are based on wavelet
decomposition of the spectra, followed by
either  an  Elastic  net  (a  generalization  of
the  LASSO  –  Zou  &  Hastie  2005)  or  the
combination  SPC/LASSO,  while  the  last
technique (PLSR) directly used the spectra.
The same techniques were tested starting
from  both  raw  spectra  and  spectra  de-
noised with wavelet shrinkage, in order to
test the effects of noise reduction on the

solutions (Fig. 1). The data came from three
soils (Andosols, Luvisols and Leptosols) of
three  different  stands,  representative  of
the Apennines forest types (Fagus sylvatica
L.,  Quercus cerris L. and  Quercus ilex L.) in
southern Italy.

Materials and methods

Soil profiles and sampling
Three soil  profiles were studied in three

different  forest  ecosystems  in  southern
Apennines (Fig. 2), in the Cilento and Vallo
di Diano National Park (Salerno, Italy). The
profiles were located along a climosequen-
ce starting from the beech (Fagus sylvatica
L.) belt, at an altitude of 1200-2000 m a.s.l.,
through the Turkey oak (Quercus cerris L.)
belt, at an altitude of 800-1200 m a.s.l., to
the holm oak (Quercus ilex L.)  belt,  at  an
altitude of  500-800 m a.s.l.  (Tab.  1).  Soils
developed on different parent rocks: soils
under F. sylvatica and Q. ilex on hard carbo-
nate, whereas soil under  Q. cerris on argil-
lite (Marchetti  et al. 2010). All horizons of
the three profiles, described using the FAO
guidelines (WRB-FAO 2014), were characte-
rized for their skeleton (soil particles grea-
ter  than  2  mm  in  diameter)  content  and
texture (Tab. 2). Soil samples for chemical,
biological  and spectral  analyses  were col-
lected in the layer 0-10 cm at the same sites
(8 samples under F. sylvatica stands 8 sam-
ples under  Q. cerris stands and 4 samples
under  Q.  ilex stand)  and  were  separately
analyzed.

Soil physico-chemical and biological 
analyses

All  the  analyses  were  performed  in  the
soil  granulometric  fraction  <  2  mm.  For
physico-chemical  analyses  samples  were
dried as described in Violante (2000), while
for biological analyses samples were kept
at 4 °C.

Texture was obtained using the hydrome-
ter method, after pre-treatment with H2O2,
to  oxidize organic  matter,  and dispersion
by  sodium  hexa-metaphosphate.  Soil  pH
was  measured using  a  potentiometer  (HI
4212®, Hanna, Woonsocket, RI, USA) in 1:2.5
H2O soil:solution suspensions. Total carbon
(C) and nitrogen (N), as well as TOC after
carbonates dissolution with HCl 10%, were
measured using a CHNS-O Analyzer (Flash
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Fig. 1 - Conceptual map of the 
performed analyses.
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EA 1112®, Thermo Scientific,  Waltham, MA,
USA).  Total  C  concentrations  were  used
exclusively to calculate the C/N ratios and
were  not  considered  in  the  chemometric
analyses. Total calcium (Ca), potassium (K),
magnesium  (Mg),  manganese  (Mn),
sodium (Na), iron (Fe) and aluminium (Al)
concentrations  were  measured  on  acid
mineralized samples,  as described by  Bal-
dantoni  et  al.  (2009).  Fe  and  Al  were
extracted  by  ammonium  oxalate  (Ox-Fe,
Ox-Al) and also by sodium pyrophosphate
(Py-Fe,  Py-Al),  and  then  quantified  with
ICP-OES  (Optima  7000DV®,  PerkinElmer
Inc, Waltham, MA, USA).

Soil respiration was measured as CO2 evo-
lution after 48 h of incubation at 25 °C in
the  dark,  with  moisture  content adjusted
at 55% of the water holding capacity (Ana-
nyeva et al.  2008). The CO2 concentration
in  the  headspace  of  incubation  vials  was
measured by a gas chromatograph equip-
ped  with  a  thermo conductivity  detector
(6850 Network GC System®,  Agilent Tech-
nologies,  Santa  Clara,  CA,  USA).  The  glu-
cose-responsive  fraction  of  microbial  bio-
mass was assessed by the substrate indu-
ced respiration (SIR),  according to  Ander-
son  &  Domsch  (1978).  Fluorescein  diace-
tate  hydrolysis  rate  (hydrolase  activity)
was determined following the method of
Schnürer  &  Rosswall  (1982) using  3.6-di-
acetyl fluorescein as substrate and measu-
ring the absorbance of the released fluore-
scein at 490 nm. β-glucosidase (EC 3.2.1.21)
activity was assayed by the hydrolysis rate
of  p-nitrophenyl-β-D-glucopyranoside  as
substrate, detecting the absorbance of the
released  p-nitrophenol  at  398  nm  (Rodrí-
guez-Loinaz et al.  2008) with spectropho-
tometry (Lambda EZ201®, PerkinElmer Inc).
Phospholipid fatty acids (PLFAs) were ex-
tracted  according  to  Frostegård  et  al.
(1993) and analyzed using a gas-chromato-
graph  (Focus  GC®,  Thermo  Scientific)

equipped with a flame ionization detector.
The sum of all  the microbial  PLFAs analy-
zed was considered as a proxy of microbial
biomass (Bååth & Anderson 2003). The fun-
gal  biomass  was  estimated by  measuring
soil ergosterol content through HPLC (Fin-
ningan  Surveyor®,  Thermo  Scientific),  as
described in Bååth & Anderson (2003).

UV-Vis-NIR soil spectroscopy
Soil  air  dried  granulometric  fractions

were used for the spectroscopic analyses.
Diffuse reflectance spectra in the ultravio-
let-visible-near infrared (UV-Vis-NIR) region
were recorded from 200 to 2500 nm in 2.0
nm steps  at  a  scan speed rate  of  30 nm
min−1,  using a spectrophotometer (V-570®,
JASCO, Easton, MD, USA) equipped with a
BaSO4-coated integrating sphere (ISV-469®,
JASCO), 73 mm in diameter. Samples were

gently pressed by hand to avoid undesired
particles orientation in the 8×17 mm rectan-
gular holes of glass holders.

Data analysis and statistical learning
Differences in the chemical and biological

top soil  properties among the three sam-
pling  sites  were  evaluated  by  non-metric
multidimensional scaling (NMDS) with the
superimposition of confidence ellipses (for
α = 0.05) and through one-way analysis of
variance (ANOVA) followed by the Tukey’s
HSD post-hoc test (α = 0.05).

Diffuse reflectance spectra were transfor-
med as log(1/R) (analogous to absorbance)
and once-differenced  to correct  for base-
line  shifts  across  the  wavelength  range.
The spectra, represented by vectors r = {r1,
…,  r1150},  were  linearly  interpolated  at  210

equally spaced points to approximate the
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Tab. 1 - Site and soil characteristics of the studied areas in southern Apennines (modi -
fied from Marchetti et al. 2010).

Canopy
Latitude

Longitude
Elevation
(m a.s.l.)

Exposure
(°)

Soil profile 
depth(cm)

WRB-FAO Soil 
Classification (2014)

F. sylvatica 40°28’ N
15°24’ E

1280 340 130 Andic Umbrisols
(Endoeutric, Eplarenic)

Q. cerris 40°13’ N
15°29’ E

915 240 85 Gleyc Luvisols
(Epidystric, Skeletic)

Q. ilex 40°27’ N
15°19’ E

575 150 30 Mollic Leptosols
(Eutric, Skeletic)

Tab. 2 - Skeleton and texture (g/kg d.w.) of the horizons of the studied soil profiles.

Component F. sylvatica Q. cerris Q. ilex

Profile 
horizons

A1 A2 Bw Bb A1 A2 Bt Bg Cg O A AC

skeleton 10 30 20 200 380 300 190 450 510 310 560 600
coarse sand 140 130 170 200 230 240 220 50 80 200 160 160
fine sand 610 620 300 310 410 400 420 390 360 400 400 390
silt 160 150 170 180 180 160 110 240 240 300 300 310
clay 90 100 360 310 180 200 250 320 320 100 140 140

Fig. 2 - Localization of the Cilento and Vallo
di Diano National Park, in southern

Apennines (Italy).
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original spectra with vectors (xi with i ϵ [1,
20])  of  210 elements,  needed  for  the  Dis-
crete Wavelet Transformation (DWT). The
vectors  xi were either directly used in the
regression  analyses,  or  firstly  denoised
through wavelet shrinkage (Fig. 1).

In  order  to  denoise  the  xi vectors,  we
employed the complex Daubechies wave-
lets (Lina & Mayrand 1995) with 3 vanishing
moments, followed by the complex multi-
wavelets style shrinkage (Barber & Nason
2004).  The spectra  were then reconstruc-
ted (di vectors, with  i ϵ [1, 20]) by inverse
transformation. The choice of the wavelet
family  and  the  shrinkage  algorithm  was
based on the extensive simulations of Bar-
ber & Nason (2004).

The xi and di vectors were used as predic-
tors  for  each soil  parameter  in PLSR mo-
dels  using  the  “SIMPLS”  algorithm  (De
Jong 1993). The number of latent variables
(LVs) was chosen, for each model, through
tenfold  cross  validation  on  ten  possible
models ranging from 1 to 10 LVs. For both
the elastic net and the SPC/LASSO regres-
sions,  the  xi and  di vectors  were  decom-
posed through DWT with Daubechies least
asymmetric wavelets, with 4 vanishing mo-
ments, and the resulting vectors of coeffi-
cients at each scale were used in the subse-
quent analyses.

In  the  Elastic  net  modeling,  the  estima-
tion of the quadratic penalty parameter  λ,
the mixing penalty parameter  α, the num-
ber  of  wavelet  coefficients  to  retain  and
the lowest level of decomposition were all
chosen basing on tenfold cross-validations.
For the quadratic penalty parameter, 100 λ
candidate values, ranging from 0 (equiva-
lent to an ordinary least square regression)
to  1  (maximum  shrinkage)  were  tested,
whereas five α candidate values for the mi-
xing penalty  parameter  were tested,  ran-

ging from 0 (ridge regression behavior) to 1
(LASSO behavior). The candidate values for
the number of coefficients and the lowest
level  of  decomposition  encompassed  all
the l-1 possible values, where 2l (with l = 10)
is the length of the xi and di vectors.

The  SPC/LASSO  modeling  consisted  of
four steps: (1) estimating the correlation of
each predictor with the outcome; (2) selec-
ting a threshold for the above correlation
coefficients to be retained for the PCR; (3)
predicting the outcome by a PCR; (4) using
the predicted values as the dependent va-
riable in a LASSO regression. All the mother
wavelet  coefficients,  from all  the  decom-
position levels  (combined in  a  single vec-
tor),  were  used  as  predictors  in  the  first
step. The threshold in the second step was
selected  basing  on  tenfold  cross-valida-
tions, with j = 100 (j [0.1]) candidate values,
and  the  number  of  components  for  the
PCR was fixed to three. The tuning parame-
ter  λ for the LASSO regressions was simi-
larly selected basing on tenfold cross-vali-
dations along the entire LASSO path calcu-
lated through the LAR algorithm (Efron et
al. 2004). The predictors in the LASSO re-
gressions were either the mother wavelet
coefficients  at  each  single  decomposition
level  or  their  combination  as  in  the  first
step of SPC, and their choice was based on
the  Mean  Squared  Error  of  Prediction
(MSEP)  of  the  resulting  LASSO  models.
MSEP was calculated,  according to  Mevik
& Cederkvist (2004), basing on leave-one-
out  cross-validation,  in  order  to  obtain  a
nearly unbiased estimator of the prediction
error.

To compare the predictive power of the
employed  techniques  four  indexes  were
used:  (i)  the Standard Error  of  Prediction
(SEP), calculated as the square root of the
difference  between  the  MSEP  and  the

squared  bias  (the  mean  difference  bet-
ween the predicted and the actual values);
(ii) the Bias; (iii) the Residual Prediction De-
viation (RPD), calculated as the ratio of the
standard  deviation  and  the  SEP;  and  (iv)
the Coefficient of Variation of RMSEP (CV-
RMSEP),  calculated  as  the  ratio  between
the square root of MSEP (RMSEP) and the
mean.

All  the  analyses  were  performed  using
the  software  R  3.0.2  (R  Core  Team 2013)
using the packages “wavethresh” (Nason
2013),  “refund”  (Crainiceanu  et  al.  2013),
“superpc”  (Bair  &  Tibshirani  2012)  “pls”
(Mevik et al. 2013), “lars” (Hastie & Efron
2013),  “vegan” (Oksanen  et  al.  2013)  and
“stats” (R Core Team 2013).

Results
The characteristics of the soil profiles are

reported  in  Tab.  2 and  discussed  in  Mar-
chetti et al. (2010), while the results of the
chemical  and  biological  analyses  carried
out on the top-soil samples collected under
F. sylvatica, Q. cerris and Q. ilex are reported
in Tab. 3. The studied soils did not differ for
pH, total Mn and respiration (Tab. 3).  Soil
samples under  Q. ilex canopy showed the
highest values of SOM, C/N, TOC and total
N,  followed by soil  under  F.  sylvatica and
then by soil under Q. cerris canopy (Tab. 3).
In  addition,  soil  samples  under  Q.  ilex
canopy showed the highest concentrations
of total Ca and Mg, and the highest values
of β-glucosidase, fungal biomass and total
PLFA, whereas, the highest concentrations
for all the other parameters were found in
soils  under  F.  sylvatica canopy  (Tab.  3).
NMDS highlighted a perfect separation of
the  soils  from  the  three  provenances  on
the base of the measured parameters (Fig.
SM1 in Appendix 1).

Processed reflectance spectra (xi and  di)
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Tab. 3 - Chemical and biological properties of the studied soils under the three canopies considered. Mean values ± standard devia -
tions are reported for 8 samples from F. sylvatica, 8 samples from Q. cerris and 4 samples from Q. ilex. Different letters indicate sig-
nificant differences among the three canopies, according to the post-hoc Tukey HSD test with α = 0.05.

Parameter F. sylvatica Q. cerris Q. ilex
pH 6.07 ± 0.24 a 6.57 ± 0.23 a 6.87 ± 0.29 a

SOM (% d.w.) 37.03 ± 3.95 a 17.66 ± 2.57 b 46.50 ± 11.55 c

TOC (mg/g d.w.) 171.30 ± 26.80 a 80.10 ± 9.70 b 328.80 ± 50.30 c

Total N (mg/g d.w.) 10.32 ± 1.85 a 6.12 ± 0.71 b 17.65 ± 3.47 c

C/N 16.72 ± 1.59 a 13.10 ± 0.55 b 18.77 ± 1.07 c

Total Ca (mg/g d.w.) 46.81 ± 11.68 a 20.89 ± 12.93 a 140.06 ± 49.95 b

Total K (mg/g d.w.) 11.18 ± 4.08 a 3.84 ± 1.70 b 6.25 ± 3.04 b

Total Mg (mg/g d.w.) 7.10 ± 2.82 a 9.33 ± 4.62 ab 15.12 ± 7.51 b

Total Mn (mg/g d.w.) 1.35 ± 0.56 a 1.98 ± 1.34 a 0.96 ± 0.37 a

Total Na (mg/g d.w.) 2.76 ± 1.17 a 0.14 ± 0.06 b 1.12 ± 0.69 b

Total Fe (mg/g d.w.) 24.49 ± 6.70 a 22.59 ± 4.72 a 11.14 ± 2.47 b

Total Al (mg/g d.w.) 42.46 ± 15.72 a 22.23 ± 12.20 b 25.13 ± 19.75 ab

Py-Fe (mg/g d.w.) 6.18 ± 1.75 a 1.95 ± 0.42 b 1.64 ± 0.56 b

Py-Al (mg/g d.w.) 18.02 ± 3.97 a 2.23 ± 0.69 b 4.86 ± 2.24 b

Ox-Fe (mg/g d.w.) 12.65 ± 2.88 a 8.33 ± 2.31 b 5.22 ± 3.24 b

Ox-Al (mg/g d.w.) 23.93 ± 7.79 a 6.45 ± 2.37 b 13.62 ± 10.35 ab

Respiration (µg CO2/g/h) 11.58 ± 3.18 a 9.83 ± 2.35 a 13.48 ± 1.50 a

SIR (mg Cmic/g) 2.50 ± 0.29 a 2.46 ± 0.42 a 1.46 ± 0.25 b

Fungal biomass (µg/g) 35.84 ± 7.66 a 25.88 ± 4.67 a 66.28 ± 18.31 b

Hydrolase (µg FDA/g/h) 0.82 ± 0.21 a 0.33 ± 0.16 b 0.54 ± 0.37 ab

β-glucosidase (µg PNP/g/h) 1.06 ± 0.17 a 0.94 ± 0.18 a 1.46 ± 0.24 b

Total PLFA (µmol/g) 466.73 ± 31.18 a 440.33 ± 81.33 a 724.54 ± 180.47 b
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Fig. 3 - Proces-
sed reflectance

spectra (xi, a
and di, b) and

their combined
mother wave-

let coefficients
(c and d, re-
spectively).

Fig. 4 - SEP (a), Bias (b), RPD (c) and CV-RMSEP (d) of the Elas-
tic net (solid black lines), PLSR (dashed lines) and SPC/LASSO
(solid gray lines) models for xi vectors. Thicker lines in (d) indi-
cate the means of  CV-RMSEP for the three techniques.  Bias
values  were  transformed  as  hyperbolic  arcsine due to  their
wide range.

Fig. 5 - SEP (a), Bias (b), RPD (c) and CV-RMSEP (d) of the Elas-
tic net (solid black lines), PLSR (dashed lines) and SPC/LASSO
(solid gray lines) models for di vectors. Thicker lines in (d) indi-
cate the means of  CV-RMSEP for the three techniques.  Bias
values  were  transformed  as  hyperbolic  arcsine due to  their
wide range.
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and their combined mother wavelet coeffi-
cients  are shown in  Fig.  3.  The denoising
step  shrank  to  zero  most  of  the  coeffi-
cients  associated  to  wavelengths  in  the
range 900-1500 nm, but preserved the ge-
neral features of the non-denoised spectra.
The prediction accuracy of the three tech-
niques,  based  on  SEP,  Bias,  RPD  and  CV-
RMSEP, varied in relation to the modeled
parameter and the processing of the spec-
tra (Fig. 4,  Fig. 5). Overall, the SPC/LASSO
gave by far the best results in terms of pre-
diction accuracy, being the absolute values
of  Bias,  SEP  and  CV-RMSEP  almost  con-
stantly lower than those obtained with the
two  other  techniques.  In  just  one  case
(TOC), the Elastic net based on the wavelet
coefficients achieved a significantly better
prediction  accuracy,  reaching  the  highest
value of RPD with both the xi and di predic-
tors. The mixing penalty of the Elastic nets
was equal to 1.00 for most parameters, the
only exceptions were 0.75 for total Fe and
K with  both  xi and  di predictors,  0.75 for
total Mn and Na with xi and 0.00, 0.25 and
0.75 for total Mn, pH and total Mg with di.
PLSR gave the worst results, both with the
xi and the di vectors, reaching values of the
three criteria similar to those obtained with
the Elastic nets, while overfitting many pa-
rameters (Fig. SM2 in  Appendix 1). On the
contrary,  the  SPC/LASSO  (Fig.  SM3  in
Appendix 1) and the Elastic nets (Fig. SM4
in  Appendix  1)  did  not  show  any  evident
overfit,  particularly  in  the  case  of  the
SPC/LASSO that also provided better  pre-
dictions for more parameters as compared
with the Elastic nets.

The  denoising  step  produced  heteroge-
neous  results,  with  improvements  in  the
prediction  accuracy  for  about  half  of  the
parameters  in  the  case  of  SPC/LASSO.  In
two cases (total N and SOM), there was a
marked improvement in the RPD owed to
the denoising of  the spectra for the SPC/
LASSO,  with  values  approximately  230%
and 190% higher than those obtained with
the  non-denoised  spectra.  Moreover,  the
denoising step generally lowered the abso-
lute values of Bias, particularly in the case
of  SPC/LASSO,  for  which  the  mean  value
and  the  standard  deviation  of  bias  were
halved.  The  number  of  coefficients  selec-
ted by the Elastic nets and the SPC/LASSO,
both with the  xi and  di predictors, was on
average similar (about 14 coefficients) for
the two techniques. In few cases, particu-
larly for total Fe, K and Na, the Elastic net
selected  far  more  coefficients  than  the
SPC/LASSO, exceeding the number  of  ob-
servations in the data set.

Discussion
The  Elastic  net,  the  PLSR  and  the  SPC/

LASSO were able to properly calibrate the
spectra for  many of  the considered para-
meters, despite the high dimensionality of
the data set analyzed. However, the three
techniques  provided  heterogeneous  re-
sults,  each suffering from different limita-
tions.  Overall,  the SPC/LASSO made most

of  the few available  observations,  produ-
cing homogeneous results for the various
parameters  considered,  and  reaching  an
acceptable level of predictability for a lar-
ger  number  of  parameters  as  compared
with  other  techniques.  No  evidence  of
overfit nor unacceptable relationships bet-
ween the predicted and the measured va-
lues were observed among the results  of
the  SPC/LASSO.  The  absence  of  overfit,
quite pronounced instead in the PLSR and
partly in the Elastic net, was due to the use
of the SPC predicted values in the training
of  the LASSO, whereas  the measured va-
lues  were  used  in  the  evaluation  of  the
models. The robustness toward the overfit-
ting is of particular interest in high dimen-
sionality problems (Hastie et al. 2008), and
makes the SPC/LASSO a promising alterna-
tive  to  more  popular  techniques.  To  our
knowledge,  this  is  the first  time that  this
technique -  and more  generally  precondi-
tioned LASSO - was applied to predict soil
properties  using  diffuse  reflectance  spec-
tra.  Further  testing  with  possibly  larger
datasets are awaited.

Surprisingly,  the  worst  results  were  ob-
tained  using  the  PLSR,  that  is  the  most
employed  technique  to  calibrate  spectra
for  soil  analysis  (Viscarra  Rossel  et  al.
2006a). The small size of the dataset ana-
lyzed  may  partially  explain  such  result.
Indeed, the dependent variable in PLSR is
used  for  the  construction  of  the  compo-
nents,  thus  seeking  directions  that  have
both  high  variance  and  high  correlation
with the outcome. Likely, using few obser-
vations not sufficient information was avai-
lable to efficiently estimate a high-dimen-
sional  covariance  matrix,  and  this  could
explain the superior performance of other
techniques. Although SPC has close affini-
ties with PLS and could be considered its
“denoised” version (Hastie et al. 2008), it
behaved  completely  different  when  ap-
plied  to  our  dataset.  Indeed,  by  filtering
the  coefficients  in  the first  step,  the SPC
discards most noisy features and reduces
the  dimensionality  of  the  model  frame,
whereas noisy features are downweighed
(though  not  removed)  by  PLS,  and  this
could affect the predictions obtained.

The  Elastic  net  performance  greatly  va-
ried in relation to the parameter conside-
red.  Despite  its  good  prediction  of  TOC
(highest value of RPD among all the deve-
loped models), it failed to properly calibra-
te  the  spectra  for  most  parameters.  The
main  differences  between  the Elastic  net
and the SPC/LASSO are the presence of a
L2-regularization (with variable weight de-
pending on the dependent variable) in the
former, and the use of predicted (instead
of raw) values as the dependent variable in
the latter. Taken together, the above con-
siderations should explain the differences
in the results obtained with the two tech-
niques. Since the mixing penalty was equal
to  1.00  for  most  of  the  parameters  and
slightly  lower  (0.75)  for  few  other  ones,
the Elastic nets behaved in most cases as

the LASSO regressions. Therefore, the su-
perior  performance  of  the  SPC/LASSO  is
due  to  the  use  of  denoised  outcomes
instead of the raw ones.

Spectra denoising differently affected the
performance  of  the  three  techniques  in
terms of prediction error, producing hete-
rogeneous  results.  On the one hand,  the
denoising step reduces the dimensionality
of the dataset (by shrinking to zero many
predictors) and removes noise-related fea-
tures that could otherwise be selected by
the  regression  algorithms,  affecting  the
predictions.  On  the other  hand,  this  step
could remove important features from the
analysis and worsen the predictions. Unfor-
tunately,  the  results  of  these  processes
could  not  be predicted,  being dependent
on  the  parameters  considered  and  the
technique applied, as demonstrated by our
results. However, in some cases the impro-
vement of prediction performances due to
spectra denoising is remarkable, as in the
case  of  pH,  SOM  and  total  N  for  the
SPC/LASSO  and  fungal  biomass  for  the
Elastic net. In addition, the denoising step
generally improved the prediction accuracy
in terms of Bias, particularly in the case of
SPC/LASSO.  Therefore,  it  is  advisable  to
test  the  relative  performance of  the  cali-
bration techniques using both raw and de-
noised spectra.

Our results indicate that SOM, TOC, C/N
ratio, total N, total Ca, Py-Fe, Py-Al, respira-
tion and, to a lesser extent, pH, Ox-Fe, Ox-
Al,  fungal  biomass,  hydrolase,  β-glucosi-
dase and PLFA, can be properly predicted
using SPC/LASSO (or an Elastic net for TOC)
on  UV-Vis-NIR  spectra  in  the  range  200-
2500 nm and few observations. Predictabi-
lity  of  TOC,  SOM and total  N using Vis-IR
spectra was  repeatedly  assessed in  many
researches relying on different calibration
techniques (see Viscarra Rossel et al. 2006a
for an overview and  Bellon-Maurel  & Mc-
Bratney  2011).  A  growing  number  of  stu-
dies was also devoted to the prediction of
soil biological properties (Terhoeven-Ursel-
mans  et  al.  2008,  Zornoza  et  al.  2008,
Heinze et al. 2013), and many evidences of
effective predictions were provided. How-
ever,  most  researches  carried  out  so  far
addressed the issue of  Vis-IR spectra  cali-
bration using large data sets, with compar-
atively low dimensionality. Despite the limi-
tations of the small data set, we were able
to  predict  many  soil  parameters  with  an
accuracy  comparable  to  those  of  many
other researches. This is not only the case
of major soil properties, like SOM, TOC and
total  N,  but  also  of  biological  properties,
such as respiration, which has no theoreti-
cal  response  in  the  UV-Vis-NIR  spectral
range. As repeatedly reported (Chang et al.
2001,  Cohen et al.  2005,  Rinnan & Rinnan
2007), this could be due to the high correla-
tion  of  biological  properties  with  other
variables  showing  clear  spectral  features
like TOC or SOM, although it was also sug-
gested  that  some  biological  properties
could be modeled independently (Zornoza
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et al.  2008). The possibility to predict soil
properties using small data sets has impor-
tant applicative implications. Although it is
possible to use published models based on
extensive libraries, it is advisable to deve-
lop specific models tailored  ad-hoc to pre-
dict soil properties at a local scale. Indeed,
models  covering  broad  geographic  areas
and  wide  ranges  of  values  can  provide
lesser accuracy at local scale than models
developed  for  the  specific  areas  of  inte-
rest.  However, it is usually difficult to ob-
tain large data sets of  measured parame-
ters  and  UV-Vis-IR  spectra  needed  to  de-
velop appropriate models, and it is usually
beyond the scope of many investigations.
In this context, the identification of calibra-
tion techniques suitable to the analysis of
data sets with high dimensionality and few
observations  is  a  primary  challenge.  Our
comparative approach revealed that wave-
let decomposition followed by a combina-
tion of SPC and LASSO (or Elastic net for
some parameters) is especially suitable to
deal  with  the  above  problems,  whereas
PLSR should be reserved to large dataset
analysis.

Conclusions
SPC/LASSO  efficiently  calibrates  UV-Vis-

NIR spectra to predict many soil  chemical
and biological properties. It generally out-
performs Elastic net and PLSR in the case
of small, high dimensional data sets, and is
especially robust toward overfitting. Spec-
tra filtering through wavelet shrinkage can
improve  prediction  accuracy  in  terms  of
both  prediction  error  and  especially  bias
for  various  soil  properties.  Our  findings
highlight the possibility to build useful pre-
dictive models  with small  data sets  using
SPC/LASSO,  allowing  the  development  of
laboratory-scale models tailored to specific
applications.
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Selection Operator
• LV: latent variable
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• MSEP: Mean Squared Error of Prediction
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• PCR: Principal Component Regression
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• PLSR: Partial Least Square Regression
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• Py-Fe: Fe extracted by sodium pyrophos-
phate

• RMSEP: Square root of MSEP
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• SEP: Standard Error of Prediction
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Supplementary Materials

Appendix 1 

Fig. SM1 –  NMDS biplot for the measured
soil  parameters  with  the  superimposition
of the confidence ellipses with α = 0.05. 

Fig. SM2 – Scatter plot of the predicted vs.
measured values of each studied parame-
ter  for the PLSR models using the  xi and
the di vectors.

Fig. SM3 – Scatter plot of the predicted vs.
measured values of each studied parame-
ter for the SPC/LASSO models using the  xi

and the di vectors.

Fig. SM4 – Scatter plot of the predicted vs.
measured values of each studied parame-
ter for the Elastic net models using the  xi

and the di vectors.
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