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Introduction
The analysis of forest ecology and the wise

management of forest resources requires ac-
curate monitoring of forestlands at regular ti-
me intervals. In turn, the monitoring process
involves sample surveys to estimate extents
and standing volumes for a wide set of forest
types and districts. These surveys are usually
referred to  as forest  inventories  (Corona &
Marchetti 2007, Corona et al. 2011a).

The  early  forest  inventories  were  perfor-
med toward  the end  of 15 th century in  the

form of censuses of oaks in the Republic of
Venice (Corona 2000). Occasional censuses
of  forest  resources were  also  performed in
Tuscany till the 18th century. During the 20th

century,  methods  for  inventorying  forests
were rapidly improved and the possibility of
reducing  costs  by  adopting  sampling  me-
thods  were  recognized.  The  first  forest  in-
ventory at country level, henceforth referred
to  as  national  forest  inventory  (NFI),  was
performed in Finland from 1922 to 1924 and
from now repeated every ten years. The first
Italian  NFI  was  performed  from  1982  to
1985, while the second started in 2003 and
concluded  at  the  end  of  2006  (see  http://
www.infc.it).

This paper provides a review of some re-
cent methodological contributions to support
NFIs. All the reviewed articles are of design-
based  nature,  in  the  sense  that  uncertainty
only stems from the sampling scheme adop-
ted to perform the inventory. As  Särndal et
al. (1992) point out “Design-based inference
is objective; nobody can challenge that the
sample was really selected according to the
given sampling design. The probability dis-
tribution associated with the design is real,
not modelled or assumed”.

In the next section NFIs are viewed as two-

phase sample surveys to estimate at the same
occasion the extent of the continuous popu-
lation of points constituting the forest cover
and the total of a forest attribute (e.g., volu-
me or biomass) in the discrete population of
trees for several forest types and/or adminis-
trative districts. Usually, NFIs are performed
using an intensive first  phase which is car-
ried out on satellite imagery or aerial photos
and a second phase which is carried out by
ground inspections, possibly adopting the in-
formation acquired in the first phase as auxi-
liary information.  A novel  methodology is
adopted  based  on  Monte  Carlo  integration
methods (Gregoire & Valentine 2008,  Man-
dallaz 2008), which leads to a very general
estimation strategy valid for any second-pha-
se sampling scheme. In section 3, some re-
cent  proposal  are  considered  in  which  the
aerial  information acquired in  the first  NFI
phase is exploited to  investigate  non forest
resources,  such  as  woodlots,  tree-rows  and
isolated trees outside the forest. In section 4
a new proposal is discussed in which canopy
height from laser scanning is adopted as au-
xiliary  information  to  account  for  missing
data  occurring  when  some  sampled  points
cannot be reached by forest crews because of
hazardous terrain. Final remarks are given in
section 5.

Two-phase inventories
Consider  a delineated study area A parti-

tioned into two land cover classes: forest and
non forest. Denote by F  A the forest por⊂ -
tion of A and by U the population of forest
trees within F. Suppose that F is partitioned
into K sub-portions F1, …, FK corresponding
to K forest types (e.g., oak, pine, larch, etc.)
or  K spatial districts or combinations of the
twos, in such a way that U is partitioned into
K sub-populations U1, …, UK of trees within
the K sub-portions.

Generally speaking, a forest inventory is a
sampling strategy to  estimate  the extent  of
the k-th forest type/district (eqn. 1):

and the total of a forest attribute Y (e.g., vo-
lume, biomass, basal area, etc. - eqn. 2):

for each k = 1, …, K, where yk (p) is the indi-
cator variable of the k-th forest type/category
defined  in  the  continuous  population  of
points p  A and is such that ∈ yk (p) = 1 if p ∈
A and  yk (p)  = 0 otherwise,  while  yj is  the
amount of Y corresponding to the j-th tree in
the discrete population of trees U.

An essential requirement of any NFI is that
extents and totals are estimated in the same
survey, using the same aerial and field inve-
stigations.
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novel  methodology  is  adopted  based  on  Monte  Carlo  integration  methods,
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woodlots, tree-rows and isolated trees outside the forest without additional
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First phase
Gregoire & Valentine (2008) and Mandal-

laz  (2008) provide  excellent  introductory
treatments on the issue of sampling discrete
objects (forest trees in the present case) scat-
tered over a region by means of plots or tran-
sects (plots in the present case) to estimate a
total. The authors emphasize that these sam-
pling strategies may be conveniently re-for-
mulated as spatial strategies for sampling the
continuous  populations  of  points  constitut-
ing the study area and estimating an integral
within.  Gregoire  &  Valentine  (2008) also
provide  a  list  of  references  from the  early
1990s in  which such a novel  intuition  was
first developed. In this setting, the inventory
issue of estimating both extents and totals is
unified,  because just like extents,  the totals
can be expressed as integrals over the study
area. The difference between extents and to-
tals is due to the variable to be recorded. As
to extents, the survey variable is the indica-
tor variable at the sampled point; as to totals,
the survey variable is the whole amount of
the forest  attribute  Y recorded for the trees
lying  within  the  plot  of  prefixed  size  and
shape centred at the sampled point. Accord-
ingly, in the first phase a unique spatial de-
sign  for  selecting points  (from which  plots
are centred) suffices for both extent and total
estimation.  As  pointed  out  by  Gregoire  &
Valentine (2008) and  Mandallaz (2008),  in
this framework estimation reduces to a two-
dimensional  Monte  Carlo  integration.  Thus
the key problem is how to effectively select
the first-phase points to better perform inte-
gration.

Despite its simplicity,  the completely ran-
dom  placement  of  N first-phase  points,
usually  referred  to  as  the  uniform random
sampling (URS), may lead to uneven covera-
ge of the study area, because some parts of
the  area  may be  sparsely sampled  whereas
others are intensively sampled. To avoid the
drawback,  stratified  or  systematic  schemes
can be adopted. A stratified scheme, usually
referred to as the tessellation stratified sam-
pling (TSS) is performed as follows: the area
A is covered by a region R  A of size  ⊃ R,
constituted  by  N  non-overlapping  regular
polygons of equal size R1, …, RN, and such
that Ri ∩ A ≠ Ø for all i = 1, …, N. Then, for
each polygon  i, a point is randomly thrown
within the polygon. Alternatively, a systema-
tic scheme, usually referred to as the syste-
matic grid sampling (SGS) can be used:  in
this case a point is randomly selected in one
polygon (e.g., the first) and then repeated in
the remaining N - 1. Most of the NFIs adop-
ted the SGS scheme, while TSS has been re-
cently applied  in  the last  Italian  NFI (Fat-
torini et al. 2006).

If  each  first-phase point  is  visited  on  the
ground  and  the  indicator  variable  of  each
type/district  is  recorded  at  the  point,  the
first-phase  Monte-Carlo  integration  estima-

tor of Ak turns out to be (eqn. 3):

where  fk =  Nk /  N and  Nk is the number of
sample points lying in Ak.  Moreover,  if for
each first-phase point  i lying in Ak a plot of
fixed size  a is delineated around the point,
the attribute Y is recorded for all the trees in
the  plots,  and  the  total  tki is  reckoned,  the
first-phase  Monte-Carlo  integration  estima-
tor of Tk turns out to be (eqn. 4):

where tki = 0 if i does not belong to Ak.
It is well-known from Monte Carlo integra-

tion  (Gregoire  & Valentine  2008)  that  (3)
and (4) are unbiased estimators under URS,
STS  and  SGS  schemes.  Moreover,  under
TSS and SGS, the variances of (3) and (4)
decrease at  a rate  faster than  N-1 (Barabesi
2003, Barabesi & Marcheselli 2003, Barabe-
si & Franceschi 2011), while URS provides
variances decreasing with  N-1. Accordingly,
for large N, tessellation gives rise to relevant
gains in precision with respect to URS.

It  is  worth  noting that  some edge  effects
may be present owing to forest trees positio-
ned near the edge of the study region, which
have inclusion probabilities smaller than the
inner trees. A long list of correction methods
has been proposed in order to avoid the ne-
gative bias induced by edge effects (Gregoire
& Valentine 2008). Fortunately,  in this fra-
mework,  the TSS and SGS schemes, selec-
ting first-phase points onto the enlarged re-
gion R, perform like the correction method
usually  referred  to  as  the  buffer  method
(Gregoire  &  Valentine  2008),  i.e.,  the  N
points are allowed to fall outside the boun-
dary of A, but within some larger region in-
cluding A. For  this reason,  under  TSS and
SGS the presence of forest  trees whose in-
clusion  zone  overlaps  the  boundary of  the
enlarged region R is likely to be negligible.
Moreover, it should be noticed that in NFIs
edges  coincide  with  the  country’s  border-
lines,  i.e.,  mountains  ridges,  rivers,  sea  in
which the presence of forest trees is very un-
like to occur. Thus, if edge effects are igno-
red that should not entail detrimental effects
on the bias of the estimators.

Second phase
Owing to costs and time involved, in real

situations  the  N points  selected  in  the first
phase cannot be visited. Rather, only a por-
tion of these points is selected in a second
phase  of  sampling  and  is  visited  on  the
ground. Actually, the first-phase is only hy-
pothetical and its treatment has the sole aim
to lead to the estimators arising from the se-
cond phase.

Regarding the second phase, the collection
of the N points selected in the first phase, say

P, is usually partitioned into the sub-set PF of
the  NF points lying in the forest area F, and
the  sub-set  P-PF of  the  remaining  N-NF

points lying outside. It  is worth noting that
the  partition  is  performed by satellite  ima-
gery  of  aerial  photos,  without  field  work.
Obviously, because the plots centered at the
points of P-PF lie completely or partially out-
side forest,  no  or  very few forest  trees are
likely to be found in these plots. Hence, it is
customary to assume tki = 0 for any i  P-P∈ F,
in such a way that the sampling effort can be
completely devoted to PF.

The  procedure  of  neglecting  non-forest
points  in  the  second  phase  is  adopted  in
most NFIs but it is not sufficiently focused
in  most familiar textbooks (de Vries  1986,
Schreuder et al. 1993, Gregoire & Valentine
2008,  Mandallaz  2008).  Even if the proce-
dure  is  suitable  from both  theoretical  and
practical  point  of  view because  avoids  the
waste  of  sampling  effort  outside  forest,  it
may provide downward bias in both extent
and total estimation. Indeed, a point can be
erroneously classified outside forest by aerial
imaging. The issue of aerial classification er-
rors  is  well  known  in  forest  inventorying,
and first-phase errors can be accounted for in
the  second  phase,  achieving  unbiased  esti-
mators of extent (Fattorini et al. 2004). How-
ever, if points classified as non-forest are ex-
cluded from the second phase of sampling,
there is no way to account  for those forest
points  erroneously  classified  as  non-forest.
This fact obviously entail underestimation of
forest  extents.  At  least  to  my  knowledge,
there is no inquiry or case study attempting
to quantify how huge is the downward bias
due to misclassification. To reduce misclas-
sification effects,  the first  phase should  in-
clude  more  auxiliary  data  sets  as  possible
(e.g., maps, point clouds from airborne laser
scanning,  forest  management  plans etc.).  If
the aerial imagery is a high spatial resolution
photographs, the non-forest areas should be
quite easily distinguished from forest. In the
same way, a plot centered at a point falling
outside  forest  but  near  a  forest  stand,  may
contain a portion of forest trees which can-
not  be  accounted  because  the  point  is  ex-
cluded from the second phase. This fact ob-
viously entail underestimation of totals. So-
me simulation studies (Maffei 2011, Corona
et al. 2014) have evidenced that the bias in-
duced by the exclusion of non-forest points
is negligible.

If  non-forest  points  are  discarded,  denote
by S  P⊂ F the second-phase sample of size n
selected  from PF by means  of  a  fixed-size
scheme inducing first- and second-order in-
clusion probabilities πi and πih (h >  i  P∈ F).
Suppose that πih > 0 for any  h >  i  P∈ F,  in
such  a way that  the second-phase variance
can  be  unbiasedly estimated.  Suppose  also
that  no  classification  errors  between  forest
and non-forest points occur, and that Pr(tki =
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0  ∀ i  P-P∈ F) = 1. Using the double-expan-
sion  estimation  (Särndal  et  al.  1992),  the
two-phase  estimators  of  extents  and  totals
turn out to be (eqn. 5):

and (eqn. 6):

respectively, where Sk  S denotes the sub-⊂
sample of second-phase points lying in the k-
th forest type/district.

Under  the  above-mentioned  assumptions,
estimators (5) and (6) turn out to be unbiased
with sampling variances which in the case of
(5) can be estimated by (eqn. 7):

and in the case of (6) by (eqn.8):

Under TSS, (7) and (8) are proven  to be
conservative estimators of the actual varian-
ces. The conservative nature of (7) and (8)
stems from TSS, owing to the independence
among first-phase points (Wolter 1985). No-
thing can be said about the properties of (5)
and (6) under SGS. In this case the estima-
tion of variance required more refined proce-
dures (Opsomer et al. 2007, Fewster 2011).

Most of NFIs involve two phases of sam-
pling. Relevant examples are the NFIs of Ca-
nada (Gillis 2001), USA (Scott et al. 2004),
the  former  Soviet  Union  (Gabler  &  Scha-
dauer 2007),  New Zealand (Stephens et al.
2012),  Romania  and  Switzerland  (Tomppo
et al. 2010). In the recent Italian NFI, three
phases of sampling are adopted.  In  the Ita-
lian case, the second-phase points are visited
to record the forest type in order to estimates
extents,  while  the totals  of forest  attributes
are estimated from a third-phase sample. The
expressions of the third-phase estimators are
obviously  more  cumbersome  than  those
achieved  in  two  phases.  Details  on  third-
phase estimators are given by Fattorini et al.
(2006).

The use of auxiliary information
As already pointed  out,  NFIs  usually  re-

quire estimates of extents and totals for seve-
ral  forest  types,  for several regions defined
by political subdivisions, for other domains
such as ownership categories and silvicultu-
ral types and for combinations of them. Prac-
tically speaking,  thousands of estimates are

produced as the output of a NFI. In this fra-
mework,  statisticians have neither  time nor
resources  to  select  ad  hoc estimators  for
each survey variable. Therefore the only fea-
sible  way  is  to  adopt  linear  estimators  as
those in equations (5) and (6), in which the
weights attached to sample observations are
constructed and applied to all variables and
domains. Because these weights are derived
from the sampling design, they do not effec-
tively take advantage of the increasing avai-
lability of various inexpensive auxiliary data
from remote sensing sources (e.g., photo-in-
terpreted  land  cover  class,  location,  eleva-
tion, slope and a sequence of thematic map-
ping spectral bands).

On the other hand,  Opsomer et al. (2007)
emphasize the great opportunity to improve
the accuracy of NFI estimates making use of
auxiliary data  derived  from remote  sensing
sources That can be done by calibration pro-
cedures in which the original weights are ad-
justed, making them sum to totals of the au-
xiliary variables. Opsomer et al. (2007) list a
large  number  of  techniques  for  adjusting
sample weights.  Most of them make use of
super-population  models  understanding  the
relationships between key forestry variables
and  remotely  sensed  information.  All  of
them adopt these models in the framework of
model-assisted  estimation,  i.e.,  models  are
only used to  determine the sample weights
while  the statistical  properties  of the resul-
ting estimators are derived in a design-based
framework from the scheme actually adopted
to select the sample points. An application to
Northern  Utah  Mountains  data  shows  esti-
mated efficiencies of the model-assisted esti-
mators which vary from 1.3 to 2 with respect
to the traditional FIA estimators (Opsomer et
al. 2007).

Estimation of non-forest resources
During  the  FAO  Expert  Consultation  on

Global  Forest  Resources  Assessment  2000
(Kotka,  Finland  1996),  the  importance  of
trees outside forests (TOF) and the need for
complete and detailed information about the-
se stands were underlined for the first time.
NFIs are currently requested to broaden their
scopes to include the assessment of TOF at-
tributes  (Kleinn  2000,  2002).  TOF include
small  woodlots,  three  rows,  urban  forests
and  isolated  trees  and  play a  basic  role  in
biodiversity conservation and carbon seque-
stration. The main objective of TOF invento-
ries is the estimation of totals and/or avera-
ges of  some physical  attribute  of  the units
(e.g., woodlot size and tree-row length). Pro-
bably, an efficient solution would require the
use of ad hoc sampling schemes for each of
the target parameters. However,  in order to
save time and resources, it may be appealing
to perform the estimation in the first-phase
of NFIs, because most physical attributes can
be recorded from the aerial information col-

lected during the first inventory phase with-
out any field work.

Quoting from Baffetta et al. (2011b), let W
be the  population  of  M woodlots,  or  trees
rows or urban forests in the study area. Let
w1, …, wM be the sizes of the M units and let
yi be the value of a physical attribute of the j-
th  unit  which  can  be  recorded  from aerial
imagery.  Suppose  that  the  population  total
(eqn. 9):

and/or the population mean ȲW = TW /  M are
the parameters to be estimated. To this pur-
pose, denote by G the set of distinct wood-
lots, tree rows or urban forests which contain
at least one of the N first-phase points and let
m be the (random) size of G. As proven by
Baffetta et al. (2011b), under TSS the quan-
tity (eqn. 10):

turns  out  to  be an  approximately unbiased
estimators of TW. It is worth noting that (10)
avoids the troublesome quantification of the
portion of the selected units lying in adjacent
quadrats,  as would be requested by the ge-
nuine  Horvitz-Thompson  estimator.  More-
over (eqn. 11):

is proven to be a conservative estimator for
the variance of  T̂(1)W. For  yj invariably equal
to 1, TW coincides with the population abun-
dance M and (10) provides an abundance es-
timator, say M̂(1). Thus a very natural estima-
tor of ȲW = TW / M is given by the ratio (eqn.
12):

which  is  approximately  unbiased  with  va-
riance estimator (eqn. 13):

The validity of these estimators is empiri-
cally checked by a simulation study (Baffetta
et  al.  2011b).  They are applied to  estimate
the  average size  and  the  abundance  of  the
Italian urban forests from the sample of the
430 urban  forests selected throughout  Italy
by the  first-phase  points  of  the  last  Italian
NFI (Corona et al. 2012a).

Regarding  isolated  trees,  their  abundance
can be estimated from the aerial information
acquired during NFIs, even if a further aerial
sampling  phase  is  necessary  in  this  case.
Baffetta et al. (2011a) propose the use of a
second-phase  in  which  the  N first-phase
points  are  partitioned  into  strata  by  using
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aerial  imagery.  Usually  the  strata  coincide
with  land  cover  classes  easily  identifiable
from  the  imagery.  Then,  a  second-phase
sample of points is selected from each strata
by simple random sampling without replace-
ment, a circle of fixed size is centered at the
second-phase points and the number of iso-
lated trees within the circle is counted once
again  from  the  aerial  imagery.  When  the
presence of isolated trees is more likely in
some strata, these strata should be more in-
tensively sampled. Moreover, because isola-
ted trees are rare and widely scattered over
territories, a suitable choice should be circles
of about 100-200 m radius which are much
larger than those usually adopted when sur-
veying within forests (10-15 m radius). If W
now denotes  the  population  of  M isolated
trees over the study area, if P1, …, PL denote
the L strata in which the population P of the
N first-phase points is partitioned, N1, …, NL

denote  the stratum sizes,  S1,  …,  SL denote
the  samples  of  points  selected  from  each
stratum and n1 , …, nL the sample sizes, the
two-phase aerial estimator of M turns out to
be (Baffetta et al. 2011a - eqn. 14)

where b is the size of circles, pl = Nl /  N,  mi

denotes the number of isolated trees aerially
counted within the plot  i and  m̅l is the ave-
rage of the mis for i  S∈ l. The estimator (10)
is unbiased with variance which can be un-
biasedly estimated by (eqn. 15):

where sl
2 is the sample variance of the mis for

i  S∈ l.
Obviously,  if  totals  or  averages  of  some

biophysical  attributes  such  as  tree  volume
and biomass are of interest (rather than size
or length), subsequent sampling phases must
be performed on the field.  Corona & Fatto-
rini (2006) propose the use of two-phase clu-
ster sampling to survey tree rows, while Co-
rona et al. (2011b) propose the use of sector
sampling to survey woodlots. A third strati-
fied sampling phase is suggested by Baffetta
et  al.  (2011a) for  field  surveys  of  isolated
trees.

Non-response treatment
Non-response is often a problem in NFIs.

Non-response  occurs  for  two  main  causes:
(a) plots selected in the second phase are lo-
cated  in  difficult  terrains  and  cannot  be
reached by survey crews or, even if reached,
the steep slope of the terrain does not allow
the recording activities within; (b) plots se-
lected in  the second phase are inaccessible
because of cultural  prohibitions  or  because

landowners deny field crews access. The rea-
sons for non-response are not necessarily the
same all over the world. In the USA, (a) is
the primary reason for non-response. Proce-
dures for treating non-response due to (a) are
proposed by  McRoberts (2003) and are not
treated here. This section deals with the pro-
blem of non-response adjustment when diffi-
cult  terrains preclude access to plots or re-
cording activities. This is especially relevant
in  those  countries  where  forest  areas  are
mainly located in mountainous and/or remo-
te areas.

In this framework,  non-response problems
manly concern the estimation of totals, whi-
ch involves the recording of forest attributes
within  the  plots  centered  at  second-phase
points. On the other hand, as to the estima-
tion of extents, in most situations the forest
type at plot centers can be determined some
distance away from the points or by means
of  high  resolution  aerial  image,  while  the
district in which plot centers fall can be even
determined from the map.

A vast literature deals with the problem of
non-response adjustment by means of seve-
ral techniques, but most of them are judged
unfeasible by Fattorini et al. (2013) for envi-
ronmental  and  forest  surveys.  Widely  ap-
plied  methods  to  account  for  unit  non-re-
sponse were recently referred to  as non-re-
sponse propensity weighting by Haziza et al.
(2010). These methods view the respondent
set as the result of a further phase of samp-
ling,  assuming  the  existence  of  a  response
mechanism for which every sampled unit has
its own invariably positive response probabi-
lity. It is also (tacitly) assumed that each unit
responds independently to the others. Practi-
cally speaking, the respondent set is realized
as a sub-sample of the selected sample. A re-
alistic model is adopted to link the unknown
response  probabilities  with  some  auxiliary
variables. The model is subsequently used to
estimate  the  probabilities  on  the  basis  of
auxiliary  information  available  for  all  the
sampled unit. Unfortunately, in forest inven-
tories  responses  cannot  be  viewed  as  out-
comes of dichotomous and independent ex-
periments  with  unknown  probabilities.  If
some  second-phase  points  cannot  be  rea-
ched, no random experiment can be claimed
because they will never be reached. In these
situations  responses  should  be  viewed  as
fixed characteristics of the points, in such a
way that the population of first-phase points
is  partitioned  into  respondent  and  non-re-
spondent  strata.  Moreover,  the  assumption
that responses are independent events is like-
ly to be unrealistic in forest surveys. Neigh-
boring points, lying in terrains with the same
characteristics, tend to have a similar respon-
se pattern,  i.e., a sort of spatial contagion is
likely to be present among responses. On the
basis of these considerations,  Fattorini et al.
(2013) conclude that the use of non-response

propensity  weighting  in  forest  inventory
does not seems to be logically defensible.

Alternatively,  unit  non-response  could  be
handled by a plethora of imputation techni-
ques.  Generally  speaking,  imputation  is  a
procedure in which non response values are
replaced by substitutes and estimation is per-
formed on  the  completed  data.  As pointed
out by  Särndal & Lundström (2005), impu-
ted values are artificial and are customarily
obtained  by  means  of  a  prediction  model
presuming a relationship between the survey
variable and a set of covariates known for all
the  sampled  units.  In  accordance  with  the
presumed model, commonly used techniques
of  imputation  are,  e.g.,  regression  imputa-
tion,  nearest  neighbor imputation,  hot  deck
imputation and multiple imputation (for a re-
view see Little & Rubin 2002). Without en-
tering  on  these  techniques,  it  should  be
pointed out that no prediction model can be
validated in the set of non-respondent units.
On the basis of these consideration Fattorini
et  al.  (2013) conclude that it  is  difficult  to
scientifically  defend  any  proposed
method/model of imputation.

Because  both  response  and  prediction
modeling are not sufficiently convincing for
non-response treatment in forest inventories,
Fattorini et al.  (2013) propose the use of a
technique  recently  referred  to  as  non-re-
sponse  calibration  weighting  (Haziza et  al.
2010).  Non-response  calibration  weighting
(henceforth  NCW)  modifies  the  weights
originally attached to each respondent obser-
vation. The modified weights are able to es-
timate without errors the means or totals of a
set of auxiliary variables known for all  the
population units. The rationale behind NCW
is  obvious:  if  the  calibrated  weights  guess
the means or totals of the auxiliary variables
without  errors,  they should  be  suitable  for
estimating the mean or the total of the survey
variable, providing a relationship exists bet-
ween the survey and the auxiliary variables.
Noteworthy,  the  NCW  approach  does  not
need to  refer explicitly to  any model,  allo-
wing for a complete design-based treatment
in which forest  attributes  and non-response
are both viewed as fixed characteristics.

The theoretical and empirical design-based
findings achieved by  Fattorini et al.  (2013)
look promising. NCW accomplishes the goal
of reducing non-response bias when the rela-
tionships between interest and auxiliary va-
riables are similar in respondent and non-re-
spondent strata. NCW can even increase the
accuracy of  estimation  with  respect  to  the
complete-sample  estimation  when  a  close
linear relationship exists between the survey
and auxiliary variables.

As to the choice of auxiliary information to
be used in NCW, it should be mainly guided
by cautionary, practical considerations about
the nature of the auxiliary variables and their
relationships  with  the  survey  variable.  In
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presence of non-response,  the crucial  point
is to eliminate non-response bias, because “if
an estimator is greatly biased, it is poor con-
solation that its variance is low” (Särndal &
Lundström 2005). Thus, the key requirement
is not the strength of the relationships bet-
ween  the  survey  and  auxiliary  variables
(which  affects  the  sampling  variance),  but
rather the fact that these relationships (linear
or not, strong or not) are similar in respon-
dent and non-respondent strata.

Noteworthy, in recent years laser scanning
(and,  namely,  airborne laser scanning,  hen-
ceforth  referred  to  as  ALS)  is  increasingly
being applied  to support  forest  inventories,
providing assessment of the height of upper
canopy for the surveyed area. A close rela-
tionship has been proven between the timber
volume (or  standing  biomass)  in  inventory
plots and the canopy height from ALS sur-
veys  (Næsset  2002,  2004,  Næsset  et  al.
2004,  Parker & Evans 2004, Corona & Fat-
torini 2008,  Gregoire et al. 2011,  Corona et
al.  2012b).  Obviously,  this  relationship
should hold irrespective of the fact that plots
can be reached in the field or not. As such, it
is  likely to  be the same in respondent  and
non respondent  stratum.  Therefore,  the ex-
ploitation of canopy height model (CHM) as
auxiliary  variable  in  the  NCW  approach
seems to be a promising strategy to account
for non-response in NFIs. It has been recen-
tly investigated by Corona et al. (2014). Be-
cause the population of first-phase points is
random - being the outcome of the first sam-
pling phase - additional  methodological re-
finements  are  necessary  to  apply  NCW in
forest  inventories  with  respect  to  the  stan-
dard  methodology proposed  by  Fattorini  et
al.  (2013) in  which  samples  are  selected
from a fixed population.

Quoting from Corona et al. (2014), denote
by R the set of second-phase points reached
in the field out of the n points of the second-
phase sample S and denote by xi = [1,hi]T the
vector  where  hi denotes  the  sum of  CHM
values for all the pixels belonging to the in-
ventory plot centered at the i-th point. If the
xis are available  for  each point  i  P∈ F,  the
mean vectors (eqn. 16):

are known for each k=1, …, K, where PF,k is
the set of the NF,k first-phase points lying in
the  k-th  forest  type/district,  and  H̄k is  the
mean of  the  CHM values  within  the  plots
centred at these points. Then X̄k can be used
in the calibration estimator of  Tk,  say (eqn.
17):

where pF,k = NF,k / N and (eqn. 18):

and  Rk  R denotes  the sub-sample of se⊂ -
cond-phase  points  reached  in  the  field
among the second-phase points lying in the
k-th forest type/district. If the relationship of
the forest attribute with CHM height is simi-
lar  for  the  respondent  and  non-respondent
points of PF,k, then T̂(2)CAL,k constitutes an ap-
proximately  unbiased  estimator  of  Tk.  The
authors also propose three conservative esti-
mator of the variance of T̂(2)CAL,k.

The simulation of a two-phase forest inven-
tory performed by Corona et al. (2014) gave
positive insights on the effectiveness of the
calibration estimator in reducing the bias in-
duced by non-response, also providing per-
formance  comparable  with  or  even  better
than  that  achieved by the complete  sample
estimator. A set of non-response zones were
scattered over the forest area, giving rise to a
percentage of non-response points  of about
9%. The relative downward bias due to non-
response was of about 13% , which reduced
to 0.2% by the use of calibration estimator
with  a  relative  error  of  2.2%.  Interestingly
the  calibration  estimator  showed  a  perfor-
mance comparable with that achieved in the
case of a complete response. In that case the
bias was absent with a relative error of 2.9%.
The sole shortcoming of the procedure was
the  estimation  of  variance  and  the  subse-
quent  construction  of  confidence  intervals.
Indeed,  the  proposed  variance  estimators
largely overestimated the actual variance, in
such a way that the actual gain achieved by
the  calibration  procedure  remained  unde-
tected  by the  variance  estimates.  The  con-
struction  of less  biased  variance estimators
seems to be one of the necessary steps to-
ward a suitable implementation of this novel
idea.

Conclusions
NFIs  based  on  two-phase  sampling  stra-

tegies  with  first-phase  points  selected  by
means  of  stratified  or  systematic  schemes
and  second-phase  points  selected  ignoring
non-forest points ensure a statistically sound
estimation of extents and totals for all varia-
bles and domains. From a design-based point
of view, the resulting estimators are indeed
approximately unbiased and conservative es-
timators of their variances are available. Mo-
reover, information achieved in the first in-
ventory phase can be used to estimate totals
and averages of physical  attributes of TOF
without any additional field work. Inexpen-
sive auxiliary data from remote sensing and
aerial  sources  can  be  used  at  estimation
level,  i.e.,  without  any modification  of  the
inventory field protocols, as auxiliary infor-
mation to improve the accuracy of the esti-
mates.  Among  these  information,  canopy

height from ASL data seems to be the most
promising,  being  able  to  improve  accuracy
and, at the same time, to reduce the bias due
to  missing  observations  occurred  at  those
points  that  cannot  be  reached  by  forest
crews.

Even if canopy height is often available at
low or even no cost from ALS surveys car-
ried  out  on  large  territories  for  purposes
other  than  forestry applications,  e.g., topo-
graphical or hydrogeological surveys (Mon-
taghi  et  al.  2013),  the  availability  of  ASL
data for a whole country (as should be neces-
sary for applications in NFIs) rarely occurs
at  the  moment.  However,  some  countries
have already completed national wall-to-wall
ASL surveys over their territories,  e.g., The
Netherlands (Swart 2010), Sweden (Petersen
&  Rost  2011),  Finland  (http://www.maan-
mittauslaitos.fi/en/maps-5), Denmark (http://
www.sharpgis.net/post/2008/10/24/First-cou
ntry-to-be-fully-mapped-in-3D.aspx),  Switz-
erland  (http://www.swisstopo.admin.ch).  If
this tendency will be confirmed in the future,
ASL data are destined to play a basic role in
NFI estimation.
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