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Introduction
Canopy  leaf  area  is  the  main  factor  for 

primary production,  energy exchange,  tran-
spiration,  and other  physiological  attributes 

related  to  ecosystem  processes  (Pierce  & 
Running  1988,  Gower  &  Norman  1991, 
Bonan 1993, Turner et al. 1999, Asner et al. 
2003). The Leaf Area Index (LAI),  defined 

as  the  projected  leaf  area  per  unit  ground 
surface area,  is frequently used to  quantify 
the canopy leaf area. Thus, LAI is one of the 
key biophysical variables required by many 
process models  describing the soil/plant/at-
mosphere system (Baret & Buis 2008, Latifi 
& Galos 2010). Because canopies and some 
of  their  characteristics  can  be  directly  ob-
served from above, LAI is among the major 
variables of interest in remote sensing ana-
lyses  (Lee et  al.  2004),  and its  importance 
has led to considerable efforts to map its dis-
tribution over a variety of spatial  and tem-
poral scales (Cohen et al. 2003, Morisette et 
al.  2006,  Zhao  & Popescu  2009,  Latifi  & 
Galos 2010, Tang et al. 2012). The majority 
of  studies  used  (semi-)  empirical  relation-
ships  between  LAI  and  combinations  of 
spectral  bands,  namely  vegetation  indexes 
(VI), for LAI mapping (Baret & Buis 2008, 
Vuolo et al. 2010). In a review paper on the 
relationships  between  remotely-sensed  VIs 
and  canopy  attributes,  Glenn  et  al.  (2008) 
point out that VIs are often strongly related 
to  light  dependent  physiological  processes 
occurring in the upper canopy, but often ex-
hibit only moderate relationships to detailed 
features of canopy architecture, such as LAI. 
VIs are generally regarded as important but 
have their limitations since they only utilize 
a fraction  of the spectral  information  avai-
lable  in  remote  sensing  data  (Gonsamo  & 
Pellikka 2012). Similarly,  it has been poin-
ted out that there is not enough evidence that 
spectral reflectance in the visible and near-
infrared  is  sufficient  to  estimate  LAI  in 
forests, especially under close canopy situa-
tions  (Lee et  al.  2004).  From their  review, 
Glenn  et  al.  (2008) concluded  that  remote 
sensing models exclusively based on VIs to 
estimate LAI are, in particular, subject to er-
ror and uncertainty. Another fact to be con-
sidered is that LAI is a variable that cannot 
be directly measured in the field. Therefore, 
all efforts to correlate VIs derived from re-
mote sensing interpretation to field observa-
tions  are  characterized  by  the  lack  of 
ground-level measurable parameters, as both 
information are results of modeling efforts.

Additional  information  derived  from  re-
mote  sensing  images  with  the  potential  to 
improve LAI predictions are texture features. 
Texture features quantify the spatial variabi-
lity  of  pixel  values  within  a  neighborhood 
defined by a moving window, and thus, com-
plement the spectral information with a spa-
tial  component  (Colombo  et  al.  2003).  As 
the variation in texture is related to changes 
in  the  spatial  distribution  of  vegetation 
(Wulder et al.  1998),  image texture can be 
linked to  the spatial  distribution  of vegeta-
tion (Colombo et al. 2003).

The scope of this paper is to investigate the 
applicability of RapidEye imagery, which is 
optimized  towards  vegetation  analyses,  for 
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Canopy leaf area, frequently quantified by the Leaf Area Index (LAI), serves as 
the dominant control over primary production, energy exchange, transpiration, 
and other physiological attributes related to ecosystem processes. Maps depic-
ting the spatial distribution of LAI across the landscape are of particularly high 
value for a better understanding of ecosystem dynamics and processes, espe-
cially over large and remote areas. Moreover, LAI maps have the potential to 
be used by process models describing energy and mass exchanges in the bio-
sphere/atmosphere system. In this article we assess the applicability of the 
RapidEye satellite system, whose sensor is optimized towards vegetation ana-
lyses, for mapping LAI along a disturbance gradient, ranging from heavily dis-
turbed shrub land to mature mountain rainforest. By incorporating image tex-
ture features into the analysis, we aim at assessing the potential quality im-
provement of LAI maps and the reduction of uncertainties associated with LAI 
maps compared to maps based on Vegetation Indexes (VI) solely. We identified 
22 out of the 59 image features as being relevant for predicting LAI. Among 
these, especially VIs were ranked high. In particular,  the two VIs using Ra-
pidEye’s RED-EDGE band stand out as the top two predictor variables. Never-
theless, map accuracy as quantified by the mean absolute error obtained from 
a 10-fold cross validation (MAE_CV) increased significantly if VIs and texture 
features are combined (MAE_CV = 0.56), compared to maps based on VIs only 
(MAE_CV = 0.62). We placed special emphasis on the uncertainties associated 
with the resulting map addressing that map users often treat uncertainty state-
ments only in a pro-forma manner. Therefore, the LAI map was complemented 
with a map depicting the spatial distribution of the goodness-of-fit of the mo-
del, quantified by the mean absolute error (MAE), used for predictive mapping. 
From this an area weighted MAE (= 0.35) was calculated and compared to the 
unweighted MAE of 0.29. Mapping was done using randomForest, a widely used 
statistical modeling technique for predictive biological mapping.

Keywords: Ecosystem Monitoring, Forest and Vegetation Parameters, Leaf Area 
Index (LAI), Hemispherical Photography, Map Uncertainty, Vegetation Indexes, 
Image Texture, Xishuangbanna
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LAI mapping along a disturbance gradient, 
ranging from heavily disturbed shrub-land to 
mature  mountain  rainforest.  By  incorpora-
ting image texture features into the analysis 
we aim at assessing the potential quality im-
provement of LAI maps and the reduction of 
uncertainties associated with LAI maps com-
pared to those based on VIs solely (Glenn et 
al.  2008). To predict  LAI we use the Ran-
dom Forest (RF) algorithm (Breiman 2001), 
an  increasingly  and  widely  used  statistical 
modeling technique for predictive biological 
mapping (Prasad et al. 2006).

Field data come from forest inventory plots 
located  in  the  uplands  of  Xishuangbanna, 
China.  Xishuangbanna  is  located  in  the 
transition zone between tropical southeastern 
Asia  and  subtropical  and  temperate  China, 

resulting in the region with the highest bio-
diversity in China (Zhang & Cao 1995, Li et 
al.  2007).  This  high  biological  diversity  is 
threatened by the expansion of rubber (He-
vea brasiliensis) plantations (Xu et al. 2005, 
Li et al. 2007,  Xu et al. 2013). In the time 
from 1976 to 2003 Xishuangbanna’s estim-
ated forest cover declined from 69% to less 
than 50% in conjunction  with  a decline of 
mean size of forest patches from 217 to 115 
ha (Li et al. 2009). The forest type most af-
fected by the expansion of rubber plantations 
was  tropical  seasonal  rain  forest  (Li  et  al. 
2007). For a better understanding of ecosys-
tem dynamics and processes over large and 
remote  areas,  as  faced  in  this  region,  LAI 
maps are of particularly high value (Chapin 
III et al. 2011).

Methods

Field data
The study site is located in Mengsong Ad-

ministrative  Village,  Jinghong  County,  Xi-
shuangbanna, Yunnan, China at an elevation 
of  800-2000  m a.s.l.  (UTM/WGS84:  47N 
656355 E,  2377646  N -  Fig.  1).  The sub-
tropical climate of this region is influenced 
by  the  Indian  monsoon;  it  has  an  annual 
mean temperature of 18 °C and an average 
rainfall of 1600-1800 mm, of which 80% is 
concentrated from May to October. Vegeta-
tion varies with altitude and the mosaic dis-
tribution of primary to secondary forest ac-
cording to micro-environments.

LAI  data  were  assessed  on  28  inventory 
plots  in  May 2011.  Each  plot  consisted  of 
nine subplots arranged on a square grid with 
50  m spacing  (Fig.  1,  lower  panel).  Plots 
covered  a  gradient  from heavily  disturbed 
shrub  land,  through  secondary regrowth  to 
mature  mountain  rainforest.  A  probability 
sampling design was implemented: (1) to al-
low for  a  statistically  sound  assessment  of 
LAI throughout  the study site;  and (2)  be-
cause  it  contributes  to  scientifically  defen-
sible accuracy assessment (Stehman & Cza-
plewski 1998). Plot locations were selected 
applying double  sampling for  stratification. 
A 500x500 m point grid was placed over the 
RapidEye image of the study site and each 
grid point  classified into shrub land,  regro-
wing  forest,  mature  forest,  and  other  land 
cover  (e.g.,  settlements,  water  bodies,  and 
mining claims). To ensure that sample plots 
were  distributed  over  the  whole  area,  the 
study site was divided into 16 equally sized 
primary units. From these primary units, 12 
were randomly selected and within each one 
mature forest plot and one regrowing forest 
grid-point  were  selected  at  random.  One 
shrub  land  grid-point  was randomly drawn 
from every second  of  the  selected  primary 
units.  The  28  selected  grid-points  became 
the SW corner of the sample plots.

At each subplot center, hemispherical pho-
tographs were taken with a Nikon D70s di-
gital single lens reflex camera equipped with 
a Sigma Circular Fisheye 4.5 mm 1:2.8 lens 
with a field of view of 180°. The camera was 
mounted on a tripod at 1.2 m height to cha-
racterize the canopy without  the interfering 
presence of understory vegetation (Tagle et 
al.  2011).  Vegetation  within  0.5  m of  the 
lens was removed, as this can lead to an in-
flation of the LAI estimate. The camera was 
leveled to  face exactly the vertical  using a 
bubble-level  slotted  into  the  flash  socket. 
The camera was systematically orientated to 
magnetic north using a compass (Beaudet & 
Messier  2002).  Photographs  were  taken 
without  direct  sunlight  entering  the  lens 
(Rich 1989) in the early morning, late after-
noon or on overcast days (Weiss et al. 2004). 
The  basic  camera  settings  were  mode  “P” 
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Fig. 1 - Location of the study site Mengsong in Xishuangbanna, China. Black squares in  
Mengsong map depict the locations of the 28 inventory plots. Plots consist of 9 subplots ar-
ranged on a square grid with 50 meter spacing.
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(Programmed  Auto),  ISO  400,  and  matrix 
metering.  Photographs  were  underexposed 
by -2 stops of exposure (Kato & Komiyama 
2000)  and  stored  in  JPEG format  (3008  x 
2000 pixels resolution -  Frazer et al. 2001). 
To the blue color planes of the 8-bit photo-
graphs,  an  automated  global  thresholding 
was applied to avoid variations in threshold 
setting  by  manual  interpretation  of  photo-
graphs and to speed up the processing time 
(Jonckheere  et  al.  2004,  Duveiller  &  De-
fourny 2010). The “Minimum” thresholding 
algorithm (Prewitt & Mendelsohn 1966) im-
plemented in ImageJ (Schneider et al. 2012) 
was used.  From the binarized photographs, 
LAI was derived  with  Gap Light  Analyzer 
2.0 (Frazer et al. 1999).

Remote sensing data
The RapidEye satellite system is optimized 

towards vegetation analyses and monitoring 
of agricultural and natural resources at rela-
tively large cartographic scale (Tapsall et al. 
2010). RapidEye’s 5 spectral bands (Tab. 1) 
have a native resolution of 6.5 m (resampled 
to 5 m). A unique feature of the sensor is the 
RED-EDGE band which possibly allows for 
better estimates of  e.g. the chlorophyll con-
tent  of  vegetation  (Viña  & Gitelson  2005, 
Tapsall et al. 2010). Making use of this spec-
tral  band,  specific VIs,  such as the NDVI- 
RED-EDGE  (Gitelson  &  Merzlyak  1997) 
and the CHLOROPHYLL-RED-EDGE-MO
DEL (Gitelson  et  al.  2005)  have  been  de-
veloped. RapidEye imagery and its associa-
ted VIs have been shown useful in deriving 
biophysical variables (among them LAI)  in 
the  agricultural  sector  (Vuolo  et  al.  2010) 
and have been proven suitable for feature de-
tection  and land cover  mapping in agricul-
tural landscapes (Tapsall et al. 2010). Never-
theless,  Vuolo  et  al.  (2010) highlight  that 
further validation work is required to test the 
applicability  to  different  vegetation  types 
and different geographical regions.

The Mengsong study site was covered by 2 
cloud free RapidEye image tiles (ortho pro-
duct level 3A),  both acquired within a few 
seconds  on  the  January  11th 2011.  Images 

were  mosaicked  and  then  pre-processed 
using the software developed by Magdon et 
al. (2011). Pre-processing involved an atmo-
spheric  correction  based  on  MODIS  atmo-
sphere data by means of the Second Simula-
tion of a Satellite Signal in the Solar Spec-
trum-Vector  (6SV)  model  (Vermote  et  al. 
1997) and a topographic correction based on 
a SRTM elevation model resampled to 30 m 
resolution.

The  reflectance  values  of  the  5  pre-pro-
cessed  RapidEye  bands  were  used  for  the 
calculation  of 6  VIs.  For  the  near  infrared 
band (NIR), texture features were calculated 
at  3  different  spatial  scales  using  moving 
windows of 15,  25,  and  35  m side length. 
Roughness  texture  features  were calculated 
in  GRASS  (GRASS  Development  Team 
2012), occurrence and co-occurrence texture 
features  and  VIs  were calculated using  the 
software by Magdon et al. (2011). In total 59 
image features  were obtained  (Tab.  1).  All 
image features were aggregated to mean va-
lues on a spatial resolution of 20 m in order 
to  decrease the effect of co-registration  er-
rors  resulting from  imperfect  matching  of 
imagery to the field sample locations (Muuk-
konen  &  Heiskanen  2005,  Fuchs  et  al. 
2009).

Selection of predictor variables
Removing predictor variables with no pre-

dictive power may improve the performance 
of an algorithm and the interpretability of a 
model as well (Svetnik et al. 2004). To con-
duct  a  selection  of  predictor  variables,  we 
compiled  a table  containing  the  LAI value 
for  each  subplot  location  and  the  corres-
ponding pixel values of all 59 image features 
as predictor variables. For data analysis the 
RF algorithm (R package  RANDOMFOREST - 
Liaw & Wiener 2002) was used. RF makes 
no assumptions about the distribution of in-
put data and is able to capture non-linear re-
lationships involving complex high order in-
teraction effects (Strobl et al. 2007). RF is an 
ensemble  model  which  uses  the  results  of 
many different  models,  in  our  case regres-
sion trees, to compute a prediction. To make 

regression trees uncorrelated, at each node of 
a tree a different subset of predictor variables 
is randomly selected as potential split criteria 
(Horning  2010).  Further,  every  regression 
tree is constructed using a different bootstrap 
sample of about 2/3 of the observations. The 
remaining 1/3 of observations, the so-called 
out-of-bag (OOB) data, is used for an inter-
nal cross validation quantifying the accuracy 
of the model (Horning 2010) and to rank the 
predictor  variables  by importance.  The im-
portance of a predictor variable is expressed 
as the relative increase in mean square error 
of the prediction of OOB data caused by a 
random permutation of values of that varia-
ble (Cutler et al. 2007). This ranking can be 
used to detect meaningful variables within a 
large set of variables (Díaz-Uriarte & de An-
drés  2005,  Horning 2010).  RF shows high 
predictive accuracy and is applicable even to 
highly  correlated  variables  (Strobl  et  al. 
2008). Since our predictor variables are ex-
clusively derived from RapidEye’s 5 spectral 
bands we expected them to be correlated to 
some extent.

We conducted  a  2 step variable  selection 
procedure  to  remove  variables  having  no 
predictive power and those being redundant. 
We used  the Boruta  algorithm (R package 
BORUTA -  Kursa & Rudnicki 2010) to elim-
inate variables without predictive power. Bo-
ruta assesses the relevance of variables for a 
decision by testing whether  the importance 
of each individual predictor variable is signi-
ficantly higher than the importance of a ran-
dom variable  (Leutner  et  al.  2012).  To ac-
count  for  the  stochasticity  inherent  to  RF, 
the algorithm fits RF models iteratively until 
all predictor variables are classified as “ac-
cepted” or “rejected” at the 0.05 alpha level. 
Predictor  variables  which  are  not  signifi-
cantly better or worse than random variables 
are labeled “tentative” (Leutner et al. 2012). 
We  computed  the  Boruta  algorithm  with 
maxRuns=1000 and ntree=500. The final set 
of all relevant predictor variables may con-
tain  highly  correlated,  redundant  variables 
(Kursa & Rudnicki 2010).

To remove redundant variables and identi-
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Tab. 1 - Image features used as predictor variables.

RapidEye bands (wave length in nm) BLUE (440 - 510), GREEN (520 - 590), RED (630 - 685), RED-EDGE (690 - 730), NIR (760 - 
850)

Vegetation indexes NDVI (Gamon et al. 1995), NDVI-RED-EDGE (Gitelson & Merzlyak 1997), NDVI-GREEN 
(Buschmann & Nagel 1993), RATIO, CHLOROPHYLL-GREEN-MODEL (CGM), CHLORO-
PHYLL-RED-EDGE-MODEL (CRM - Gitelson et al. 2005)

Texture indexes calculated on the NIR 
band (for moving window sizes of 15, 25, 
and 35 m each)

Occurrence (Anys et al. 1994): ARITHMETIC MEAN (MEAN), STANDARD DEVIATION 
(SD), COEFFICIENT OF VARIATION (CV)
Co-occurence (Haralick et al. 1973): ANGULAR SECOND MOMENT (ASM), CONTRAST 
(CON), ENTROPY (ENT), INVERSE DIFFERENCE MOMENT (IDM), CORRELATION 
(COR), DISSIMILARITY (DIS), MAXIMUM PROBABILITY (MAXP), MEAN (MEANCO), 
VARIANCE (VARC), CLUSTER SHADE (CS), CLUSTER PROMINENCE (CP)
Roughness: VECTOR DISPERSION K (ROUGH1 - Fisher 1953, Grohmann et al. 2009), 
AREA RATIO (ROUGH2 - Grohmann et al. 2009)
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fy a parsimonious model, we applied back-
ward elimination of variables (Svetnik et al. 
2004,  Díaz-Uriarte  &  de  Andrés  2005). 
From the set of “accepted” predictor varia-
bles as ranked by the Boruta algorithm sub-
sequently  the  least  important  variable  was 
removed;  following a  RF model  was build 
using the remaining predictor variables. This 
non-recursive removal of the least important 
variable was repeated until only 2 predictor 
variables were left.  For  each RF model  its 
generalization performance was evaluated by 
calculating the mean absolute error obtained 
from a 10-fold cross validation (MAE_CV). 
In each fold, a random selection of 10% of 
data points was excluded as test data, then a 
RF model was fit on the remaining data and 
applied to predict the test data. Absolute dif-
ferences  between  predicted  and  observed 
data values were averaged per fold and then 
averaged over all folds. This cross validation 
procedure was repeated 20 times (each time 
using different randomly chosen test data) to 
acquire  stable  MAE_CV  values.  Finally, 
MAE_CV values resulting from these repeti-
tions were averaged and complemented with 
its standard deviation. Compared to the cross 
validation using OOB data, which is conduc-
ted internally by the RF algorithm, such an 
external cross validation is regarded to result 
in a more objective quality assessment of the 
model  performance (Reunanen  2003,  Svet-
nik et al. 2004). Further, by using a non-re-
cursive approach and embedding the varia-
ble  selection  into  an external  cross  valida-
tion,  bias in performance evaluation due to 

over-fitting is  prevented (Cawley & Talbot 
2010).

After  fitting all  RF models we selected a 
model  with  best  efficiency in  terms of  the 
number  of  variables  and  the  resulting 
MAE_CV. Following the principle of parsi-
mony we selected the model with the fewest 
number of variables showing no significant 
increase  of  MAE_CV  compared  to  the  lo-
west  MAE_CV.  Wilcoxon`s  rank  sum test 
was  used  to  test  whether  differences  in 
MAE_CV were significant at α = 0.05 level. 
Finally, a RF model with 8 predictor varia-
bles was selected and applied on the respec-
tive  variables for LAI mapping.

Assessing map uncertainties
Given  that  map  users  often  treat  uncer-

tainty statements only in a pro-forma manner 
(Fassnacht et al. 2006), we place special em-
phasis  on  uncertainties  associated  with  the 
resulting map. Therefore, generalization per-
formance of the RF model used for predic-
tive  mapping  was  evaluated  by the  MAE_ 
CV,  calculated  as  described  above.  The 
goodness-of-fit of the RF model was quanti-
fied  by  the  mean  absolute  error  (MAE). 
Since it  was found that  the goodness-of-fit 
was not uniformly distributed over the range 
of predicted LAI values, MAE was also cal-
culated for distinct sections of predicted LAI 
values.  Finally,  the resulting LAI map was 
complemented with a map depicting the spa-
tial  distribution  of  MAE  values  per  LAI 
class.  Furthermore,  areas  covered  by pixel 
values  beyond  the  range  of  the  available 

training data were mapped to highlight that 
extrapolation beyond the range of available 
training  data  is  problematic  and  that  these 
predictions need to be interpreted cautiously 
(Leutner et al. 2012).

Eventually, we derived the following error 
estimates to assess the uncertainties associa-
ted with the resulting map:
1. MAE_CV  obtained  by  10-fold  CV  to 

provide  an estimate  of  the  generalization 
performance of a RF model trained on the 
entire sample.

2. MAE as a quantification of the goodness 
-of-fit of the RF model to the data.

3. Exploratory  analysis  revealed  that  the 
model  fit  is  better for  low (<1)  and high 
(>3) LAI values than for intermediate ones 
(Fig. 2).  Therefore, the range of predicted 
LAI values was subdivided into 3 classes 
and for each class MAE and confidence in-
tervals were calculated.

4. An area-weighted MAE was calculated by 
weighting the MAE of each class with its 
areal extent.

5. To highlight  that model fit  was not  even 
over the whole range of predicted LAI va-
lues a spatial distribution of per class MAE 
values  was  presented  as  a  supplementary 
map (Fig. 7).

6. The share of the total image area covered 
by reflectance values that were beyond the 
range of training data was stated and the 
corresponding area mapped.

Assessing  the  influence  of  texture  fea-
tures on LAI prediction

To  evaluate  the  influence  of  texture  fea-
tures  on  LAI predictions,  RF models  were 
built either using only VIs, only texture fea-
tures, or both jointly. Generalization perfor-
mance of these models was evaluated by the 
MAE_CV,  calculated  as  described  above. 
Wilcoxon`s rank sum test was applied to test 
whether differences in MAE_CV were signi-
ficant at α = 0.05. In this analysis only those 
VIs and texture features which were classi-
fied as relevant by the Boruta analysis were 
considered.

Results

Response variable
Observed LAI values ranged from 0 to 6.67 

with a mean LAI of 2.75. Predicted LAI va-
lues covered a smaller range from 0.1 to 4.32 
with a mean LAI of 2.74. In the scatterplot 
depicting observed  vs. predicted LAI values 
(Fig.  2),  it  is  obvious  that  low LAI values 
tended to be over-predicted, while high LAI 
values  tended  to  be  under-predicted.  Two 
data points having exceptional high observed 
LAI values were grossly under-predicted by 
the RF model. A tendency towards a better 
model fit for high and low LAI values was 
visible.  For  the  intermediate  section  of  the 
LAI range, for which only few observations 
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Fig. 2 - Scatterplot of predicted vs. observed LAI values. The subdivision of predicted LAI 
values into three classes (<1, 1-3, and >3) according to the fit of the RF model used for pre-
dicting LAI is indicated. Prediction accuracy was lowest for the intermediate LAI class (LAI  
1-3).
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were available,  the  accuracy of  predictions 
was lower.

Predictor variables
Based on the Boruta analysis we identified 

22 out of the 59 predictor variables as being 
relevant for predicting LAI. Among these, all 

6 VIs were ranked at high positions (Fig. 3), 
with  NDVI-GREEN  ranked  lowest  at  10 th 

position.  The  VIs  using  the  RED-EDGE 
bands information, CHLOROPHYLL -RED-
EDGE-MODEL (CRM)  and  NDVI-  RED-
EDGE,  stand  out  as  the  top  two  predictor 
variables. Interestingly, the RED-EDGE and 

the NIR bands themselves were ranked dis-
tinctly lower at rank 17 and 31, respectively. 
The  RapidEye  bands  RED,  GREEN,  and 
BLUE were listed at positions 9, 11, and 12 
of the ranking.

The texture feature ROUGH1 was ranked 
3rd, 5th, and 7th for moving window sizes 15, 
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Fig. 3 - Ranking of predictor variables ac-
cording to their importance assessed by the 
Boruta algorithm. Boruta generates random 
variables and tests whether correlations of 
these random variables with decisions are 
higher than correlations of real variables with 
decisions. Colouring: (grey): relevant varia-
bles; (white): irrelevant variables. Prefixes: 
(RE): RapidEye band; (VI): vegetation in-
dex; (TX): texture feature. The numbers (3, 
5, and 7) following the TX-prefix refer to the 
moving window size of 15, 25, and 35 m 
side length, respectively.
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25,  and  35  m  side  length,  respectively. 
ROUGH2, calculated for all 3 moving win-
dow sizes,  was ranked  among the  relevant 
predictor  variables at positions 13,  15,  and 

19. From the group of co-occurrence texture 
features  only CON,  DIS,  and  VARC were 
classified  relevant.  All  occurrence  texture 
features were classified irrelevant.

Comparing the MAE_CV values resulting 
for  RF models  based  on  VIs  only,  texture 
features only,  and VIs  and texture  features 
combined,  lowest  MAE_CV  was  observed 
for the RF model based on the combination 
of  VIs  and  texture  features  (MAE_CV  = 
0.57). The RF model based on VIs only was 
ranked second (MAE_CV = 0.62).  The RF 
model exclusively using texture features per-
formed worst  (MAE_CV = 0.79  -  Fig.  4). 
All observed differences were significant.

Backward selection of variables resulted in 
MAE_CV values for RF models as depicted 
in  Fig. 5. The lowest MAE_CV = 0.56 was 
achieved by the RF model using the top 14 
predictor  variables.  Since the MAE_CV of 
this  model  was  not  significantly  different 
from the RF model using only the top 8 pre-
dictor variables (MAE_CV = 0.57, p = 0.1) 
we selected this more parsimonious RF mo-
del for predicting/mapping LAI.  All MAE_ 
CV values of RF models using less than 8 
predictor  variables  were significantly diffe-
rent  from the  MAE_CV  of  the  RF  model 
having the lowest MAE_CV.

It  is  worth  mentioning  that  the  highest 
MAE_CV was observed  for  the  RF model 
using only the top  two predictor  variables, 
the VIs CRM and NDVI-RED-EDGE. How-
ever,  if the texture  feature ROUGH1 is in-
cluded into the RF model, MAE_CV drops 
considerably (p < 0.0001).

LAI map - spatial prediction of LAI
We produced  a  wall-to-wall  LAI  map of 

the study area by applying the selected RF 
model to the corresponding combination of 
image  features  (Fig.  6).  MAE_CV  of  the 
LAI map was 0.57 and the MAE was 0.29. 
The area-weighted MAE (0.35) was slightly 
higher  than the unweighted MAE (Tab. 2). 
This  difference  occurred  because:  (1)  the 
MAE of the intermediate LAI class was no-
ticeably higher  than the MAE of the other 
classes; and (2) the intermediate class cove-
red roughly one third (29% -  Fig. 7) of the 
mapping area, thus,  its MAE was weighted 
by a factor of the same magnitude as those of 
the other two classes (Tab. 2). The larger dif-
ferences  between  observed  and  predicted 
LAI  values  occurring  in  the  intermediate 
LAI class did not influence the unweighted 
MAE too much since the total number of ob-
servations in this class was lower compared 
to those of the other two classes (Tab. 2).

Exploratory analysis  of image areas  asso-
ciated with high MAE values revealed that 
high MAE values cannot be directly related 
to specific vegetation types. Furthermore, the 
variability of predictor variables for the cor-
responding LAI class was not higher than for 
the other classes (Tab. 3).

Overall,  7.46% of the study site were co-
vered  by pixel  values beyond the  range  of 
our training data (Fig. 7).  Visual inspection 
revealed that primarily water bodies,  settle-
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Fig. 4 - MAE_CV based on 20 repetitions 
of 10-fold cross validations for RF models 
using VIs only, texture features only, and 
VIs and texture features combined. Error 

bars depict standard deviations of 
MAE_CV values calculated over 

20 repetitions.

Fig. 5 - Backward elimination of predictor variables. Points represent mean MAE_CV (error 
bars: standard deviation) for RF models based on the respective predictor variable given on  
the y-axis combined with those listed above that predictor variable.
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Fig. 6 - LAI map for the Mensgong study site (January 
11th  2011). Map uncertainty was approximated by the 
MAE and the MAE_CV (complemented with their es-
timated standard errors - in parenthesis).

Fig. 7 - Map of model fit, quantified by the MAE, as a 
proxy for prediction uncertainty associated with LAI 
map (Fig. 6). Overall, 7.46 % of the mapping area 
were covered by pixel values that were out of range 
(OOR) of training data. (SE): standard error.
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ments/roads, bare agricultural land, and mi-
ning claims were represented by these pixel 
values. Nevertheless, out-of-range pixel  va-
lues were also found within vegetated areas, 
yet no vegetation type could be identified as 
being particularly affected.

Discussion
We produced a high resolution map depic-

ting the spatial variability of LAI by combi-
ning RapidEye  data and LAI estimates ob-
tained  from field  sampling.  Such  map  has 
the  potential  to  be  used  in  spatially distri-
buted  modeling  of  vegetation  productivity, 
evapotranspiration,  and  surface  energy  ba-
lance (Turner et al. 1999, Tang et al. 2012), 
and it can support a better understanding of 
ecosystem processes over  large and remote 
areas (Chapin III et al. 2011). This is parti-
cularly important for regions like Xishuang-
banna that harbor a high biodiversity (Zhang 
&  Cao  1995,  Li  et  al.  2007)  which  is 
threatened by the dramatic expansion of rub-
ber  plantations  (Xu  et  al.  2013,  Li  et  al. 
2007).  The results  from this  study provide 
information  to  make  inferences  about  eco-
system dynamics of our study area. The pre-
sented approach to map LAI using the RF al-
gorithm has the potential to be transferred to 
other  geographical  regions  harboring  diffe-
rent vegetation types. Transferred to another 
region,  the resulting LAI maps presumably 
carry an error which differs from that repor-
ted by our study. Therefore, the user should 
make  sure  that  map  uncertainties  are  de-
scribed adequately.

The LAI values observed in this  research 
were slightly lower but  generally in  accor-
dance  with  other  studies  assessing  LAI  in 
tropical/ subtropical ecosystems. In a review 
paper  Asner  et  al.  (2003) reported  a  mean 
LAI of 4.9 for tropical evergreen broadleaf 
forests.  Roberts  et  al.  (2004) obtained  LAI 
values ranging from 4.1 to  8.0 for  tropical 
lowland  rainforests,  with  a  tendency  for 
higher values in Asia. Along a gradient co-

vering  open  pasture,  secondary forests,  re-
generation  forests  after  selective  logging, 
and  old-growth  forests  Tang  et  al.  (2012) 
mapped LAI using waveform LIDAR at La 
Selva, Costa Rica and observed mean values 
of 1.74,  5.20,  5.41,  and 5.62 LAI,  respect-
ively. Nevertheless, there are few studies for 
direct comparisons since different definitions 
of LAI are  frequently used (Barclay 1998) 
and different methods for LAI determination 
are applied in the field (Bréda 2003, Asner et 
al. 2003). Furthermore, a significant fraction 
of  literature  on  LAI  does  not  describe  the 
methodology used in sufficient detail,  thus, 
comparability  is  hampered  (Asner  et  al. 
2003, Beckschäfer et al. 2013). Differences 
between studies may also arise from seasonal 
changes  in  LAI due  to  changes  in  rainfall 
volume and other climatic parameters (Bréda 
2003).  In  our  study,  field  data  and  remote 
sensing  data  were  acquired  within  the  dry 
season,  which  might  have  caused  slightly 
lower LAI values compared to those found 
in the literature.

Except for two outliers showing observed 
LAI values distinctly higher than predicted, 
a good agreement between observed and pre-
dicted  LAI  values  was  found.  MAE  was 
highest  for the intermediate LAI class con-
taining  lower  numbers  of  observations. 
Higher MAE values might be explained by 
the greater spatial variability of LAI values 
observed in this class resulting from hetero-
geneous shrub vegetation and trees scattered 
within  grasslands.  In  such  a heterogeneous 
landscape slight location errors in field and 
satellite data might result in perceptible pre-
diction errors. Using a pixel size of 20x20 m 
we tried to  account  for  these errors  but  in 
some cases they may still occur. Moreover, it 
needs to be taken into account  that LAI as 
derived from hemispherical photographs is a 
modeled value in itself, which might already 
carry an unknown error. Further, a tendency 
towards an under-prediction of high LAI va-
lues and an over-prediction of low LAI va-

lues has been observed. This is because the 
response from a RF model, in the case of re-
gression, is a value resulting from averaging 
the predictions made by all trees within a RF 
(Horning 2010).

VIs derived from RapidEye data, especially 
those making use of the RED-EDGE band, 
appeared to be important for predicting LAI. 
The importance of the RED-EDGE informa-
tion  results  from the  sensitivity  of  the  re-
spective electromagnetic spectrum (680-740 
nm)  to  vegetation  chlorophyll  content  that 
shows an abrupt rise in reflectance caused by 
vegetation. This is related to strong chloro-
phyll absorption and high internal leaf scat-
tering of plant tissue (Schuster et al. 2012). 
By choosing the RED-EDGE band,  instead 
of the RED band for the NDVI calculation, a 
lower saturation over highly vegetated area 
is  achieved  (Tapsall  et  al.  2010).  Surpri-
singly, the RED-EDGE band itself was only 
ranked  17th among  the  relevant  predictor 
variables. The higher ranking of VIs  might 
be explained  by their  general ability to  re-
duce  the  impacts  of  confounding  factors 
such as soil reflectance and atmospheric ef-
fects on reflectance values (Baret  & Guyot 
1991, Lu 2005).

Besides VIs, the texture features ROUGH1 
and ROUGH2 were ranked high among the 
relevant predictor variables. MAE_CV of RF 
models  including  VIs  and  texture  features 
jointly was significantly lower  than  MAE_ 
CV of RF models exclusively based on VIs. 
This shows the potential  of texture features 
derived from RapidEye data to improve the 
quality of LAI maps and to reduce the asso-
ciated uncertainties. Similar effects of the in-
clusion of texture features have been repor-
ted for IKONOS satellite data (Colombo et 
al.  2003)  and  airborne  CASI  imagery 
(Wulder et al. 1998). Nevertheless, most tex-
ture features were classified irrelevant by the 
Boruta analysis in our study, pointing to the 
difficulty to identify which specific textural 
characteristic is  represented  by each of the 
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Tab. 2 - Mean Absolute Error (MAE) calculated for 3 sections of predicted LAI values.

LAI 
section

No. of 
observations

MAE Area 
(pixel)

Weight
Area-weighted MAE

Value % SD SE Value SE

<1 45 0.25 57.81 0.3 0.05 63913 0.27 0.07 0.01

1-3 43 0.65 25.93 0.71 0.11 68113 0.29 0.19 0.03

>3 164 0.21 6.07 0.3 0.02 102546 0.44 0.09 0.01

Tab. 3 - Coefficient of variation of predictor variables’ pixel values per LAI class standardized by the respective number of observations per  
LAI class.

LAI
(observed)

VI_CRM
VI_NDVI-

RED-EDGE
TX5_

ROUGHNES1
VI_RATIO

TX3_
ROUGHNES1

VI_CGM
TX7_

ROGHNES1
VI_NDVI

<1 0.77 0.52 1.82 0.34 1.73 0.7 1.86 0.47

1-3 0.53 0.33 2.29 0.26 2.21 0.55 2.13 0.22

>3 0.09 0.05 0.34 0.03 0.37 0.13 0.33 0.03
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texture  features  (Wulder  et  al.  1998).  Tex-
ture features vary with the characteristics of 
the landscape under investigation and image 
types used (Lu 2005), and besides the identi-
fication of appropriate texture features, sui-
table moving window sizes and image bands 
need  to  be determined  (Chen  et  al.  2004). 
Clear  guidelines  on  how  to  select  appro-
priate  texture  features  are  still  lacking; 
hence, the generation of suitable texture fea-
tures is a challenging task (Lu 2005). In our 
study,  texture  features  were  calculated  for 
the  NIR  band using  three  moving  window 
sizes  of  15,  25,  and  35  m  side  length. 
Whether  a  different  set  of  texture  features 
would be among the relevant predictor varia-
bles if calculated for larger moving window 
sizes or different spectral bands, was not in-
vestigated here but should be considered in 
future mapping efforts. For LAI mapping it 
might  be of particular interest whether tex-
ture features calculated for the two VIs iden-
tified as being most relevant for predictions 
would further increase map accuracy.

Using only a reduced set of predictor varia-
bles  did  not  substantially enhance the  pre-
dictive performance of the RF models. This 
confirms previous studies stating that RF is 
generally able to deal with large amounts of 
non-informative  or  redundant  variables 
(Diaz-Uriarte & de Andrés 2005,  Leutner et 
al.  2012). Nevertheless, reducing the set of 
predictor  variables  might  reduce  computa-
tional  cost  and  increase  the  interpretability 
of the predictions made by the model (Svet-
nik  et  al.  2004).  In  our  opinion,  reducing 
model complexity and providing map users 
with understandable descriptions of the me-
thods used to create a map should be an in-
tegral  part  of predictive  mapping.  Through 
this,  informed  assessments  of  appropriate 
and inappropriate uses of maps can be made 
by the user (Fassnacht et al. 2006).

Map interpretation and inference are direc-
tly  affected  by  map  accuracy.  Therefore, 
users should not rely on maps without asso-
ciated  estimates  of  error  (Card  1982).  Ad-
dressing this issue, we provided estimates of 
data  fit  and  generalization  performance  of 
the RF model.  Following the recommenda-
tion of  Mitchard et al. (2011), we addition-
ally complemented  the  produced  LAI  map 
with an estimated spatial distribution of ac-
curacy.  From  this  map  an  area  weighted 
MAE was calculated. By providing an area 
weighted MAE and the corresponding MAE 
map, the user is able to evaluate the useful-
ness of the map at hand.  Mapping of areas 
having pixel values which were beyond the 
range of reflectance values available in  the 
training data appeared to be valuable infor-
mation.  Exploratory  analysis  revealed  that 
such  areas  were  mainly declared  for  land-
scape elements such as water bodies, settle-
ments,  or mining areas for which LAI pre-
dictions would be questionable.

Our  results  demonstrate  the  suitability  of 
RapidEye data to retrieve LAI across a range 
of landscape classes including forests. Thus, 
the applicability of RapidEye imagery to de-
riving LAI for agricultural areas (Tapsall et 
al.  2010,  Vuolo  et  al.  2010)  can  be  broa-
dened to include forest  ecosystems. This is 
especially valuable, as forest LAI is regarded 
as one of the most important structural varia-
bles for understanding ecosystem processes 
(Bonan 1993).
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