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Introduction
Systematic  forest  health  monitoring  has 

been conducted  in  Europe for almost  three 
decades. In 1985, the International Co-ope-
rative Programme on Assessment and Moni-
toring  of  Air  Pollution  Effects  on  Forests 
(ICP Forests) was launched under the Con-
vention  on  Long-range  Transboundary  Air 
Pollution  of  the  United  Nations  Economic 
Commission  for  Europe  (UNECE)  and 
standardized  methods  for  forest  monitoring 
were defined (Fischer & Lorenz 2011). Also, 
in  1998,  Lithuania  started  a  regular  forest 
monitoring program using ICP methods and 
standards.  Forest  monitoring  is  performed 
using a network of observation plots scatte-
red across the country. Crown defoliation is 

one of the principal indicators of tree health 
(Ozolinčius & Stakenas 1996). Tree defolia-
tion  is  visually  assessed  by comparing  the 
foliage loss of an individual with a healthy 
reference tree of the same crown type in the 
vicinity using 5% units. The reference tree is 
based on a photograph of a local tree, repre-
senting a tree with full foliage, or a concep-
tual (imaginary) tree (Eichhorn et al. 2010). 
Defoliation  assessment,  therefore,  relies  on 
the experience and skills of the observer and 
tends to have some level of subjectivity.

Instrumental  measurements  of  tree  crown 
defoliation  would  substantially  reduce  the 
intrinsic  subjectivity  of  defoliation  assess-
ments (Augustaitis et al. 2009,  Bikuviene & 
Mozgeris 2010,  Mozgeris et al.  2011). Nu-

merous studies have investigated the poten-
tial application of ground-based, airborne or 
spaceborne  remote  sensing  techniques  to 
assess  tree  defoliation.  One  example  of 
ground-based instrumental measuring of de-
foliation includes the use of semi-automatic 
image analysis systems to assess crown tran-
sparency from photographs based on fractal 
analysis (Nobuya & Dobbertin 2004). Satel-
lite  and  airborne  remote  sensing  can  also 
provide an alternative to traditional ground-
based  assessments  of  forest  health  (Ciesla 
2000,  Solberg  et  al.  2004,  Wulder  et  al. 
2006). However, assessing defoliation in this 
way may be  difficult  because  of  the  asso-
ciated costs of image acquisition,  methodo-
logical issues in data processing, limited spa-
tial,  radiometric  and  temporal  resolutions. 
Despite the numerous studies discussing the 
role of remote sensing in forest health asses-
sment, very few examples of truly operatio-
nal  techniques  are  demonstrated.  However, 
multispectral  imaging,  or  more specifically, 
hyperspectral  remote  sensing,  appears  to 
have  a  strong  potential  for  forest  health 
assessment (Entcheva-Campbell et al. 2004, 
Somers et al. 2010, Cho et al. 2012).

Research in the field of hyperspectral ima-
ging for  forestry applications has increased 
significantly during the last decade. Hyper-
spectral  imaging is  expected to  prove  very 
useful in the remote identification of forest 
tree species as well  as in  the evaluation of 
forest  health.  Furthermore,  with  the advent 
of a new generation of hyperspectral came-
ras,  such  as  the  VNIR400H  used  in  this 
study, the potential use of hyperspectral ima-
ging for forest health monitoring should be 
investigated.

Hyperspectral  remote  sensing,  also  called 
“hyperspectral  imaging”  or  “imaging  spec-
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Spectral reflectance properties of healthy 
and stressed coniferous trees

Gediminas Masaitis (1), Gintautas Mozgeris (1), Algirdas Augustaitis (2)

This study investigates the properties of hyperspectral reflectance of healthy 
and stressed  coniferous  trees.  Two coniferous  tree species  which naturally 
grow in Lithuania, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea 
abies (L.)  Karst.),  as  well  as  an  introduced  species,  Siberian  pine  (Pinus 
sibirica Du Tour), were selected for the study. Hyperspectral reflectance data 
were collected under laboratory conditions by scanning the needles of healthy 
(no foliar loss) and stressed Norway spruce (foliar loss 66-70%), Scots pine (fo-
liar loss 71-75%) and Siberian pine (foliar loss 86-90%) trees using a Themis Vi-
sion Systems VNIR 400H hyperspectral imaging camera. The spectrometer of 
the camera covers the spectral range of 400-1000 nm with the sampling inter-
val of 0.6 nm. Simultaneously, the chlorophyll a and b content in the needles 
was determined by spectrophotometrically measuring the needles’ absorbance 
of ethanol extracts. The statistical analyses included principal component ana-
lysis, analysis of variance and partial least squares regression techniques. Rela-
tively large spectral differences between healthy and stressed trees were de-
tected for Norway spruce needles: 884 out of 955 wavebands indicated a stati-
stically  different  reflectance  (p<0.05).  The  reflectance associated  with  the 
stress  level  was  statistically  different  (p<0.05)  in  767 and  698 out  of  955 
wavebands for Scots pine and Siberian pine, respectively. The most informa-
tive  wavelengths  for  spectral  separation  between  the  needles  taken  from 
healthy and stressed trees were found in the following spectral ranges: 701.0-
715.7 nm for Norway spruce, 706.1-718.2 nm for Scots pine, and 862.3-893.1 
nm for Siberian pine. The relationship between the spectral reflectance pro-
perties of the needles and their chlorophyll content was also determined for 
each species.  Waveband  ranges  (as  well  as  single  bands)  most  sensitive  to 
changes in chlorophyll content were: 709.9-722.1 nm (715.6 nm) for Norway 
spruce; 709.3-721.4 nm (715.0 nm) for Scots pine; 710.6-722.7 nm (720.1 nm) 
for Siberian pine. In general, the study revealed that narrow-band based hy-
perspectral imaging has the potential for accurately detecting stress in conife-
rous trees.

Keywords:  Conifers,  Imaging  Spectrometry,  Hyperspectral  Reflectance,  Tree 
Stress, Waveband Selection
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trometry”, is based on a combination of ima-
ging  and  spectroscopy in  a  single  scheme. 
Hyperspectral  sensors  are  instruments  that 
acquire  images  of  an  object  in  very many 
and  very  narrow  (nanometre  level)  conti-
guous spectral bands. Depending on the con-
struction, they can sense the electromagnetic 
waves  in  the  ultraviolet,  visible,  near  in-
frared, mid infrared and even thermal ranges 
of  the  electromagnetic  spectrum.  These  in-
struments can collect from hundreds to more 
than a thousand bands of data for every pixel 
of an image. Hyperspectral  sensing has the 
potential for precise identification, discrimi-
nation,  and classification of various objects 
and their features. For example, an object in 
a hyperspectral  image can be classified ac-
cording  to  its  physiological,  chemical  and 
other type of physical characteristic. Hyper-
spectral remote sensing involves hundreds of 
wavebands  and  very narrow spectral  inter-
vals,  typically  leading  to  large  volumes  of 
data. Furthermore, neighbouring wavebands 
have a high degree of correlation,  resulting 
in informational  redundancy (Thenkabail  et 
al.  2004) created by oversampling.  Spectral 
signals  are  sampled  at  very small  steps  to 
allow for the discrimination of very narrow 
spectral features (Shaw & Manolakis 2002). 
Researchers dealing with hyperspectral data 
face new challenges such as the treatment of 
high-dimensional data and a requirement for 
extensive  computation  capacity  and  data 
storage (Varshney & Arora 2004).

Research related to the spectral reflectance 
properties of trees (at the leaf, crown or en-
tire stand level) has been conducted for seve-
ral  decades.  Numerous studies  have shown 
that  reflected  electromagnetic  radiation  re-
corded in narrow spectral bands can provide 
informative  data  about  the  condition  of 
plants and how plants change over time, and 
also enable a researcher to remotely analyze 
the plants’ physiological characteristics and 
chemical  properties  (Entcheva-Campbell  et 
al.  2004,  Huber et al. 2008,  Moorthy et al. 
2008,  Cho et  al.  2012,  Wang & Li 2012). 
Studies  on  the application  of hyperspectral 
imaging can be divided roughly into two ca-
tegories:  (1)  employment  of  airborne  or 
spaceborne  hyperspectral  sensors  -  in  this 
case  the  hyperspectral  images  are  acquired 
for relatively large areas and the analyses fo-
cus on the various approaches to identifica-
tion, discrimination or classification; (2) ex-
ploration  of  in  situ acquired  hyperspectral 
data collected under field or laboratory con-
ditions.  Here,  the  focus  is  on  the  spectral 
portion of the hyperspectral cubes, recorded 
for relatively small objects such as a single 
plant, branch or leaf, usually with the aim of 
investigating which portion of the spectrum 
or even which separate waveband or wave-
bands contribute  most to the spectral  sepa-
rability of different plant species, their con-
dition or  chemical constituents.  Studies  fo-

cused  on  hyperspectral  data  at  the  single 
plant level show that field or laboratory ac-
quired  hyperspectral  measurements  can 
significantly  contribute  to  determining  a 
plant’s level of stress (Atzberger & Werner 
1998,  Smith  et  al.  2004,  Moorthy  et  al. 
2008,  Wang & Li  2012).  The  spectra  ob-
tained in situ are fundamental in the building 
of spectral libraries, such as a set of labora-
tory  spectra  for  various  materials.  Develo-
ping spectral libraries is fundamental to im-
proving the full mapping potential of hyper-
spectral data (Zomer et al. 2009, Manakos et 
al. 2010, Nidamanuri & Zbell 2011).

Hyperspectral  imaging  techniques  can 
identify the optical  properties  of forest  de-
cline  and  serve  to  explore  the  relationship 
between optical and spectral data to assist in 
the identification of properties related to the 
health  assessment  of  a tree  (Vogelmann & 
Rock 1988, Treitz & Howarth 1999). While 
foliar  chlorophyll  (as  well  as  carotenoids) 
concentrations typically decrease when plant 
stress level increases, additional constituents 
accumulate within the leaves. Such changes 
affect leaf spectral properties and provide the 
possibility of remotely diagnosing a plant’s 
stress level (Rock et al. 1986, Martin & Aber 
1997,  Datt  1998,  Zarco-Tejada et  al.  2004, 
Malenovský et al. 2006). The reflected radia-
tion of the visible and near infrared portions 
of the electromagnetic spectrum has proven 
to be the most important  in detecting plant 
stress (Gitelson et al. 2003). Changes in leaf 
chlorophyll  and  water  content  significantly 
affect  leaf  reflectance.  Chlorophyll  is  the 
most important factor, which affects leaf re-
flectance  in  the  visible  and  near-infrared 
spectra  (Carter  1993).  The  reflectance  in-
creases  in  the  700-1300  nm range  due  to 
light scattering from the internal structure of 
leaves. The differences in reflectance proper-
ties between healthy and damaged plants are 
most observable  in  the green peak and red 
edge  (Carter  et  al.  1996,  Gitelson  et  al. 
2003). The red edge is where the reflectance 
curve  increases  at  the  margin  between  the 
chlorophyll  absorption  zone  in  red  wave-
lengths and the light  scattering zone in  the 
near-infrared  wavelengths.  The  position  of 
the red edge is considered to be stable across 
different plant species and ranges from 680 
nm to 750 nm (Horler et al. 1983).

In  Lithuania,  spectral  measurements  of 
forest trees in relation to their health status 
were conducted more than two decades ago 
using  what  is  now considered  an  outdated 
spectral radiometer technology. Only an ave-
rage  reflectance curve  for  the object  being 
sensed  was  possible  at  that  time.  The  re-
search mainly focused on the spectral mea-
surements of needles and branches of Nor-
way spruce  (Picea  abies Karst.)  and  Scots 
pine  (Pinus  sylvestris L.)  with  different 
levels of crown defoliation. The most effec-
tive spectral zones for defoliation assessment 

were  determined  and  some methodological 
solutions for improving the process of spec-
tral  measurement  were  suggested  (Repšys 
1992).  However,  since  then,  no  other  re-
search on spectral properties of forest trees 
has been conducted in Lithuania.

This paper describes the initial results of a 
study using hyperspectral imaging to acquire 
and use reflectance data at the plant level in 
Lithuania.  The study focuses on the ability 
of hyperspectral data to discriminate betwe-
en healthy and stressed Scots pine, Norway 
spruce and Siberian pine (Pinus sibirica Du 
Tour) trees.  Scots pine and Norway spruce 
are the most common and commercially im-
portant tree species in Lithuania. Scots pine 
stands make up 35.3% and Norway spruce 
20.8% of the total  forest  area (State Forest 
Service 2011). The introduced Siberian pine, 
used only in urban  areas for landscape de-
sign, was also of interest. The objectives in-
clude:
• Verifying the significance of spectral  dif-

ferences between healthy and stressed Nor-
way spruce, Scots pine and Siberian pine 
using hyperspectral imaging techniques.

• Determining  the  wavebands  which  best 
represent the spectral differences between 
Norway spruce,  Scots  pine  and  Siberian 
pine (stressed and healthy).

• Examining  the  relationships  between  the 
spectral  reflectance  properties  of  the 
needles of Norway spruce, Scots pine and 
Siberian  pine  and  their  chlorophyll  con-
tent,  and determining the wavebands that 
are  most  effective  in  discriminating 
between  the  chlorophyll  content  in  the 
needles  of  stressed  and  healthy  Norway 
spruce, Scots pine and Siberian pine.

Materials and Methods
Samples of healthy (no foliar loss or other 

visible  symptoms  of  tree  stress  or  disease) 
and stressed Norway spruce (yellowish green 
needles, foliar loss 66-70%) and Scots pine 
(yellowish  green  needles,  foliar  loss  71-
75%) were collected in a 20-year-old mixed 
Norway spruce-Scots  pine stand.  A part  of 
this healthy stand portion (~ 0.2 ha) suffered 
from temporal flooding which consequently 
resulted  in  heavily stressed trees with  high 
levels of foliar loss. Samples of healthy (no 
foliar loss or other visible symptoms of tree 
stress  or  disease)  and  stressed  (brownish- 
green needles, foliar loss 86-90%) Siberian 
pine of similar age were collected in urban 
environments  since  this  species  is  exclusi-
vely used  for  landscape  design  and  is  not 
naturally found in Lithuanian forests.

The middle-upper part of the crown of each 
tree  was easily accessible  from the ground 
and  therefore  sample  branches  from  the 
outer crown were cut using a telescopic cut-
ter. Three trees for each species and for each 
condition  were selected for sampling.  Nine 
sample branches were cut from the southern 
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side of the crown of each tree. A total of 27 
samples  were  collected  representing  each 
tree species condition (healthy and stressed). 
Samples  were  taken  in  January  2012.  Cut 
samples were packed into plastic bags with 
some added  snow for  sample  preservation. 
Bags were labeled, put into portable cooler 
bags  and  transported  to  the  laboratory  for 
immediate spectral measurements.

The scanning process was conducted using 
a  new  generation  Themis  Vision  Systems 
LLC hyperspectral camera VNIR400H (Bay 
St.  Louis,  MO,  USA).  This  device  was 
equipped with a highly sensitive VNIR spec-
trometer  capable  of  covering  the  spectral 
range of 400-1000 nm with a sampling inter-
val of 0.6 nm, producing 955 spectral bands. 
The spatial data of each scanned sample was 
recorded in a charged-coupled device (CCD) 
array with  a  1392  × 1000  pixel  resolution 
(pixel  size  was  6.45  μm ×  6.45  μm).  The 
camera, using a field of view of 30 degrees, 
was mounted on a copy stand and was orien-
ted in the nadir position with the lens fixed 
at  33  cm above  the  sample.  Two  100  W 
halogen  lamps,  which  can  provide  stable 
electro-magnetic  radiation  in  the  400-1000 
nm range,  were  used  for  sample  illumina-
tion. The halogen lamps were fixed symme-
trically at both sides of the camera’s lens and 
illuminated  the  sample  allowing  their  light 
beams to crisscross  above  the sample.  The 
scanning room was darkened to avoid unre-
lated  spectral  signals  from  ambient  light 
sources.

Hyperspectral  image  acquisition  was exe-
cuted by locating sample branches only on 
last  year’s  sprouts  and  harvesting  every 
needle  from them.  The  needles  were  then 
spread on top of a plate painted matt black 
so  that  the  background  plate  was  fully 
covered by needles. The spectral response of 
each needle sample was recorded four times. 
The background plate was rotated 90 degrees 
horizontally after every hyperspectral sample 
to  correct  for  the  bidirectional  reflectance 
distribution.  These  steps  were  repeated  for 
all  samples  resulting  in  raw  hyperspectral 
images of needle samples (four for each se-
parate sample).

Next, the radiance curve was converted to a 
reflectance curve for each image pixel. Com-
pleted  target  measurements  were  compared 
against  the  ones  of  a  reference  panel  of 
known spectral reflectance (Avian Technolo-
gies LLC 99% white  reference panel).  The 
spectrometer  internal  current  (dark current) 
was  also  corrected.  The  resulting  spectra 
were  then  smoothed  using  the  Savitzky-
Golay filter function with a 4th-order polyno-
mial fit and 25 data points. The steps above 
were repeated for each hyperspectral  image 
that was then cropped (100 × 100 pixels).

Finally,  four  reflectance  curves  were  de-
rived  from the  four  needle  sample  images 
and then averaged to  construct  a single re-

flectance curve for each sample. A total  of 
162 reflectance curves were constructed (54 
for each species). Each reflectance curve was 
treated  as  a  series  of  numbers  (reflectance 
coefficients) and was used for statistical ana-
lyses.

Statistical Analyses
The distribution of the spectral responses at 

every spectral band was tested for normality 
using the Shapiro-Wilk test (α = 0.05)  and 
the  homogeneity  of  the  variance  was 
checked using Levene’s test (α = 0.05). The 
spectral data at every spectral band (p > α) 
and for all species investigated were homos-
cedastic and normally distributed.

Student’s t-test was applied to compare the 
spectral  responses  of  both  healthy  and 
stressed trees of the same species to deter-
mine  whether  the  reflection  values  of 
samples  of  stressed  trees  were  statistically 
different from healthy trees at every spectral 
band. The null hypothesis H0: μhealthy = μstressed 

was compared to  the alternative hypothesis 
H1: μhealthy ≠ μstressed, where μ was the mean re-
flectance  value  of  the  species  compared. 
Then the hypothesis test was carried out us-
ing  two  sample  t-tests  for  all  955  spectral 
bands (α = 0.05). The t-test was also used to 
select the spectral bands that helped distin-
guish between healthy and stressed trees of 
corresponding  species  (spectral  bands  with 
the lowest p-values are most separable). The 
ten bands with the lowest p-values were se-
lected  for  having  high  separability  power 
and the spectral band with the lowest p-value 
was selected for being the most effective at 
separating healthy and stressed trees.

Principal  component  analysis  (PCA)  was 
employed to search for trends in differences 
between the healthy and stressed tree needle 
samples for each tree species. The non-linear 
iterative  partial  least  squares  (NIPALS)  al-
gorithm was employed in calculations (Wold 
1966, Wold et al. 1987). In this study, prin-
cipal component analysis was used to com-
pute the contribution of the reflectance com-
ing  from each  wavelength  to  the  principal 
components. Wavebands were treated as in-
dependent  variables.  The reflection  data  of 
all  54  samples  (27  for  healthy and  27  for 
stressed trees) of each tree species were ana-
lyzed.  The  data  were  pre-processed  using 
unit  variance  scaling  and  mean-centering 
procedures. Component loadings represented 

the  relative  grade  to  which  each  variable 
(waveband)  explained  the  relationship 
between the component  and sampled stress 
level. If the component covers a significant 
portion of the overall data variance that is re-
lated  to  the  differentiation  of  stress  levels, 
then the wavebands with highest loadings on 
that  component  are  well-suited  for  stress 
level differentiation. The 20 wavebands with 
the highest loadings to  PC1 and PC2 were 
selected to display the spectral ranges.

The needle chlorophyll (a + b) content was 
spectrophotometrically determined in a labo-
ratory by measuring  the  needle  absorbance 
of ethanol  (96.3%) extracts.  A Student’s  t-
test  was used  to  test  for  a  statistical  diffe-
rence  between  the  measured  chlorophyll 
content  of  healthy  and  stressed  needle 
samples (Tab. 1).

The partial least squares regression (PLSR) 
was  used  to  select  the  most  informative 
wavelengths with  regards to  needle chloro-
phyll content. PLSR is well suited to analyze 
a  large  array of  related  predictor  variables 
(i.e.,  not  truly independent),  with a sample 
size not large enough compared to the num-
ber of independent variables (Carrascal et al. 
2009, Wold et al. 2001). PLSR models were 
built independently for the three tree species. 
The values of one attribute (chlorophyll con-
tent  of  the  54  healthy  or  stressed  needle 
samples) of the data set were used to repres-
ent  the  dependent  variable  (Y)  and  the 
wavelength  reflectance  values  of  the  54 
healthy or stressed needle samples represen-
ted the independent variables or the predic-
tors (X). The data were pre-processed using 
unit  variance  scaling  and  mean-centering 
procedures.  The  R2Y  (multiple  correlation 
coefficient),  Q2 (leave-one-out  cross-valida-
tion R2Y) and root mean square error of es-
timation (RMSEE) were calculated for each 
model  to  check  the  fit  and  the  predictive 
ability of the models. All three models were 
also  validated  using external  data  sets  cre-
ated by randomly selecting 30 % of samples 
from initial data sets. The root mean square 
errors  of  prediction  (RMSEP)  were  esti-
mated to check the predictive power of the 
models.  The  wavebands  with  variable  im-
portance in the projection (VIP) scores > 1 
were  selected  for  construction  of  reduced 
PLSR models.  These models employed  the 
spectral  responses of only these bands pre-
dictors (X). R2Y, Q2 and RMSEP for the re-
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Tab. 1 - Measured average chlorophyll (a + b) content in the needle samples of healthy and  
stressed trees. (SD): standard deviation.

Tree species
Chlorophyll content 

(mg/g fw, ± SD)
Statistical 
difference 
(p value)Healthy Stressed

Norway spruce 3.90 ± 0.06 2.73 ± 0.07 3.09 × 10- 09

Scots pine 2.77 ± 0.06 1.78 ± 0.04 1.40 × 10- 09

Siberian pine 2.19 ± 0.07 1.88 ± 0.04 0.01
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duced  PLSR models  were calculated  follo-
wing the same procedures as stated above.

After comparing both types of the models 
(involving full  range of wavebands and re-
duced  range  of  wavebands),  the  ones  with 
higher values of Q2 and lower values of RM-
SEP were selected for  identification  of the 
wavelengths  most  sensitive  to  chlorophyll 
content.  The  wavelengths  most  closely  re-
lated to chlorophyll  content were identified 
by their  VIP  scores.  The  wavelengths  that 
corresponded  to  the  highest  values of  VIP 
scores  were  retained  for  each  tree  species. 
The  first  20  bands  with  the  highest  VIP 
scores were retained for  their  sensitivity in 
detecting changes in chlorophyll content for 
each tree species.

Statistical  analysis  was  performed  using 
SPSS  version  16.0  (SPSS  Inc.)  and  Simca 
version 13.0 (Umetrics AB).

Results 
Results from the Student’s t-tests indicated 

the  means  of  reflectance  values  of  healthy 
and  stressed  sample  trees  were  statistically 
different for the majority of spectral bands. 
The  largest  relative  spectral  differences 
between healthy and stressed trees were ob-
served for Norway spruce: the means of re-
flectance values were significantly different 
(p-values < 0.05) on 884 out of 955 (93%) 
wavebands, while 767 out of 955 (80%) for 
Scots  pine  and  698  out  of  955  (73%)  for 
Siberian  pine  were  significantly  different. 
Tab. 2 lists the ten most sensitive bands of 
the spectral range for separating healthy and 
stressed trees for each species.

The PCA indicated that the first two prin-
cipal components explained more than 90% 
of the variance in the samples of spectra in-
vestigated (Tab. 3). Therefore, only the first 
two  principal  components  (PC1  and  PC2) 
were selected for evaluating the contribution 
of wavelengths to the separation of healthy 
and stressed trees (Fig. 1).

The selected spectral ranges and the spec-
tral bands with the highest loadings to PC1 
and PC2 are presented in  Tab. 3. The prin-
cipal component analysis was meant to sup-
port and validate the results of the Student’s 
t-test, but while the results were slightly dif-
ferent,  they were not  contradictory (Tab.  2 

and  Tab. 3). Norway spruce and Scots pine 
wavelengths  in  the red edge of the spectra 
were  most  closely  correlated  to  both  PC1 
and  PC2  (Tab.  3).  However,  the  red  edge 
was only a secondary factor  in  stress  level 
separation (contributed to PC2 for Siberian 
pine).  A portion  of the near  infrared spec-
trum was the primary detector of differences 
between healthy and stressed Siberian pine 
trees (largest loadings for PC1).  Moreover, 
principal component analysis revealed a con-
sistent  range  of  wavelengths  having  the 
highest  factor  loadings  either  to  PC1 or  to 
PC2 for all tree species. The 706.1-718.2 nm 

spectral interval was strongly involved in the 
PC2 for  Norway spruce and Siberian  pine, 
but for Scots pine, in PC1 (Tab. 3).

The PLSR models involving the full range 
of predictors indicated a strong potential ac-
curacy to predict the chlorophyll content for 
Norway spruce and Scots pine, while mode-
rate accuracy for Siberian pine (Tab. 4). VIP 
scores of these models discovered that 431, 
378 and 459 bands out of 955 bands were 
the  most  important  (VIP  score  >1)  for 
chlorophyll  content  prediction  for  Norway 
spruce,  Scots  pine  and  Siberian  pine,  re-
spectively.  Reducing  the  number  of  wave-
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Tab. 2 - Separability of healthy and stressed tree needles (Student’s t-test).

Tree species

Number of spectrally 
different (p<0.05) 

spectral bands 
(total: 955)

Most informative 
spectral range for 

tree stress 
identification

Most informative 
wavelength for tree 
stress identification 
(smallest  p-value)

Norway spruce 884 709.9-715.7 nm 713.1 nm
Scots pine 767 708.6-714.4 nm 711.2 nm
Siberian pine 698 862.3-868.1 nm 864.2 nm

Tab. 3 - Most informative spectral ranges and bands for separation between healthy and 
stressed tree needles (principal component analysis).

Tree species

Percentage of 
variability 

explained by

Spectral range
with highest

factor loadings to

Wavelength with 
highest factor 

loading to
PC1 PC2 PC1 PC2 PC1 PC2

Norway spruce 63 33 701.0-713.1 nm 706.1-718.2 nm 707.4 nm 712.5 nm
Scots pine 62 36 706.1-718.2 nm 777.8-790.1 nm 711.8 nm 784.9 nm
Siberian pine 93 6 880.9-893.1 nm 706.1-718.2 nm 884.8 nm 712.5 nm

Fig. 1 - Scores of principal component analysis for (a) Norway spruce; (b) Scots pine; (c) Siberian pine.

Tab. 4 - Characteristics of partial least squares regression modelling, including multiple cor-
relation coefficient (R2Y), leave-one-out cross-validated multiple correlation coefficient (Q2), 
root mean square error of estimation (RMSEE), root mean square error of prediction (RM-
SEP), to predict the chlorophyll content in needles. For each table cell, upper figure refers to 
the full waveband model, lower figure refers to the reduced waveband model.

Tree species Number of 
observations

Number of
components

Number of
wavebands R2Y Q2 RMSEE RMSEP

Norway spruce 54 5 955
431

0.96
0.96

0.95
0.94

0.116
0.124

0.123
0.136

Scots pine 54 5 955
378

0.95
0.95

0.94
0.93

0.115
0.113

0.136
0.135

Siberian pine 54 5 955
459

0.75
0.73

0.55
0.58

0.067
0.069

0.083
0.088
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bands did  not  improve the accuracy of the 
models (Tab. 4). PLSR models using the full 
range  of  wavebands  for  detecting  which 
wavelengths are most tightly related to chlo-
rophyll  content  were  most  successful.  The 
wavelengths  with  the  most  discriminating 
power (the ones with the highest VIP scores) 
for  distinguishing  chlorophyll  content  in 
samples  of healthy and  stressed  trees  were 
715.6,  715.0  and  720.1  nm  for  Norway 
spruce,  Scots  pine  and  Siberian  pine,  re-

spectively (Fig. 2). The disparity of the most 
predictive wavelengths among all three spe-
cies was less than 6 nm. The most sensitive 
spectral  ranges  to  changes  in  chlorophyll 
content  between  healthy  and  stressed 
samples  of  each  tree  species  were  709.9-
722.1,  709.3-721.4 and 710.6-722.7 nm for 
Norway  spruce,  Scots  pine  and  Siberian 
pine, respectively (Fig. 2). Waveband ranges 
that  were  most  sensitive  to  changes  in 
chlorophyll content were very similar for all 

three species and generally cover the range 
of 709.3-722.7 nm.

Discussion 
We used the full range of data of all narrow 

wavebands  recorded  with  a  hyperspectral 
camera. In  doing so, we avoided losing in-
formation  that  a  single  contiguous  band 
might  contain  regarding  the  stress  level  of 
the studied  objects.  No effort  was made to 
decrease data redundancy between adjacent 
bands.

This  study  revealed  that  most  sensitive 
spectral  ranges for  tree stress identification 
are  located  at  701.0-715.7  nm for  Norway 
spruce and 706.1-718.2  nm for  Scots pine. 
Also, the partial least squares regression de-
monstrated that the red edge is the portion of 
the  spectrum  where  wavelengths  are  most 
tightly  related  to  the  chlorophyll  content. 
The wavelengths are located at 715.6 nm for 
Norway spruce, 715.0 nm for Scots pine and 
720.1 nm for Siberian pine.

These  results  are  reconcilable  with  other 
studies that found the red edge to be most in-
formative  in  terms of its  responsiveness  to 
changes  in  chlorophyll  content  caused  by 
plant  stress.  For  example,  Carter & Knapp 
(2001) discovered that an increase in reflec-
tance at 700 nm was the most consequential 
and  most  sensitive  to  plant  stress.  Their 
study involved the analysis of the impact of 
various  stressors  (such  as  diseases,  insects, 
dehydration,  competition,  etc.)  on  the  re-
flectance in the range of 400-850 nm for dif-
ferent species including loblolly pine (Pinus  
taeda L.),  radiate  pine  (Pinus  radiata D. 
Don),  sweetgum  (Liquidambar  styraciflua 
L.), red maple (Acer rubrum L.), wild grape 
(Vitis rotundifolia Michx.), switchcane (Ar-
undinaria  gigantea (Walter)  Muhl.)  and 
longleaf  pine  (Pinus  palustris  Miller).  Lu-
ther  &  Carroll  (1999) investigated  foliar 
spectral reflectance of balsam fir (Abies bal-
samea (L.) Mill.) and found the reflectance 
in the red edge at 711 nm was most sensitive 
to stress.  Eitel et al. (2010) analyzed stress-
induced  variation in chlorophyll  concentra-
tion for nursery-grown Scots pine seedlings. 
Accuracy of estimates improved after adding 
reflectance data in the red edge bands to the 
initially  available  spectral  reflectance  data. 
Entcheva-Campbell  et  al.  (2004) employed 
an airborne hyperspectral scanner and found 
the 673-724 nm range to be the most infor-
mative to  initial  damage of Norway spruce 
stands in the Czech Republic.

Nevertheless,  the most  sensitive wavelen-
gths related to stress for Siberian pine were 
located in the near infrared zone spectra at 
862.3-893.1  nm.  The  principal  component 
analysis,  however,  proved  that  the  706.1-
718.2  nm interval  in  the red edge was the 
second  most  important  factor.  This  could 
suggest that changes in the reflectance of the 
near-infrared range of the spectra were cau-

© SISEF http://www.sisef.it/iforest/ 34  iForest (2013) 6: 30-36

Fig. 2 - Selection of 
wavelengths corres-
ponding to the highest 
value of variable impor-
tance in the projection 
scores of partial least 
squares regression for: 
(a) Norway spruce; (b) 
Scots pine; (c) Siberian 
pine.
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sed  by a  significant  alteration  of  the  inner 
structures of the Siberian pine needles. This 
calls for a closer examination of the sample 
trees.  As  previously  mentioned,  sampled 
trees  of  stressed  Norway spruce  and  Scots 
pine were sampled from a forested environ-
ment and their foliar loss was 66-70% and 
71-75%,  respectively.  Stressed  Siberian 
pines were sampled from an urban environ-
ment and, more importantly, their foliar loss 
was higher,  86-90%. The Siberian pine re-
sults demonstrate the importance of near in-
frared spectra in the detection of more hea-
vily stressed plants.

In our particular case, the PLS regression 
results show that the wavelength ranges most 
sensitive  to  chlorophyll  content  were  very 
similar  for  all  three tree  species  and  gene-
rally  covered  the  range  709.3-722.7  nm. 
While  most  wavelengths  detecting  chloro-
phyll content differed depending on the par-
ticular  species,  the  disparity  was  minimal 
(<6 nm). This complements the findings of 
Gitelson & Merzlyak (1996) who identified 
the 700-710 nm range as most sensitive to 
leaf  chlorophyll  a  concentration  for  horse 
chestnut  (Aesculus  hippocastanum  L.)  and 
Norway maple (Acer platanoides L.). Simi-
larly,  Datt  (1998) found  maximum sensiti-
vity  of  reflectance  to  variation  in  pigment 
content of leaves of various Eucalyptus spe-
cies  in  the  wavelength  regions  of  550  nm 
and  708  nm.  Gitelson  et  al.  (2003) dis-
covered  that  reciprocal  reflectance  in  the 
spectral ranges of 520 to 550 nm and 695 to 
705  nm related closely to  the total  chloro-
phyll  content  in  leaves  of  Norway  maple, 
horse  chestnut,  wild  vine  (Parthenocissus  
tricuspidata L.) and common beech (Fagus  
sylvatica L.). A spectral index developed by 
Malenovský et  al.  (2006) was proposed  to 
estimate the chlorophyll content of a Norway 
spruce crown. This index is based on the re-
flectance continuum removal of the chloro-
phyll  absorption  feature between the wave-
lengths 650-725 nm.

The results of this study suggest that refi-
ning the research capabilities of hyperspec-
tral imaging for forest health monitoring in 
Lithuania could prove beneficial. While the 
elaboration of a diagnostic tool for remotely 
detecting  stressed  plants  goes  beyond  the 
scope of this study, the technique employed 
here demonstrated  the possibility of distin-
guishing  extreme  contrasts  of  plants  stress 
levels. While this is a limiting factor in the 
treatment  of  the  study  results,  the  consis-
tency of  the  results  with  regards  to  stress 
levels  suggests  that  further  studies  are  re-
quired to fully understand the relationships 
between tree stress (different levels of defo-
liation) and their reflectance properties. For 
example,  more  subtle  spectral  reflectance 
properties  might  be  revealed  when  exami-
ning  trees  with  lesser  differences  in  stress 
level  or  ones  with  very similar  defoliation 

but growing on different sites or of different 
age. With the advent of the new-generation 
hyperspectral cameras, this is a promising di-
rection for future research.

Conclusions
The study revealed that a strong relation-

ship exists between the spectral  reflectance 
properties of Norway spruce, Scots pine and 
Siberian pine and their stress status. It  also 
confirmed that the red edge is the most sen-
sitive  spectral  zone  for  stress  detection  in 
two Lithuanian coniferous tree species, Nor-
way spruce and Scots pine. The importance 
of near infrared spectra  in  the detection  of 
heavily stressed coniferous trees should not 
be underestimated based on our findings for 
Siberian pine.

The 706.1-718.2 nm spectral interval was a 
consistently  strong  stress  indicator  wave-
length for all  tree species in this study,  al-
though  it  was  of  secondary  importance  in 
Norway spruce and Siberian pine.

The use of partial least squares regression 
models suggests  that  hyperspectral  imaging 
is an effective remote sensing technique for 
predicting  needle  chlorophyll  content  be-
cause  a  strong  relationship  exists  between 
the  needle  reflectance  spectra  of  Norway 
spruce,  Scots  pine  and  Siberian  pine  and 
their chlorophyll content.

This study demonstrated the strong poten-
tial of narrow-band based hyperspectral ima-
ging to detect the differences in reflectance 
properties  of  two  categories  of  stress  for 
Norway  spruce,  Scots  pine  and  Siberian 
pine.  It  also set the direction for future re-
search  in  the  use  of  hyperspectral  remote 
sensing to assess and monitor tree health.

Acknowledgments 
The study was carried out within the frame-

work  of  the  national  project  No  VP1-3.1-
ŠMM-08-K-01-025  “Specific,  genetic  di-
versity and sustainable development of Scots 
pine forest to mitigate the negative effects of 
increased  human  pressure  and  climate 
change” supported by the EU Social Fund.

References
Atzberger  C,  Werner  W  (1998).  Needle  reflec-

tance of healthy and diseased Spruce stands. In: 
“Material of 1st EARSeL workshop  on imaging 
spectroscopy”.  Remote  Sensing  Laboratories, 
University of Zurich, Switzerland, pp. 271-283.

Augustaitis  A, Mozgeris G, Eigirdas M, Sajonas 
M (2009). Color infrared aerial images to evalu-
ate tree crown defoliation. In: Proceedings of the 
“4th International Scientific Conference on Rural 
Development”.  Akademija,  Kaunas  distr. 
(Lithuania),  15-17  October,  2009.  Lithuanian 
University  of  Agriculture,  vol.  4,  book  2.  pp. 
213-216.

Bikuviene  I, Mozgeris  G (2010).  Testing the si-
multaneous use of laser scanning and aerial ima-
ge data for estimation of tree crown density. In: 

Proceedings  of  the  “16th Annual  International 
Conference  Research  for  Rural  Development”. 
Jelgava (Latvia),  19-21 May, 2010. Latvia Uni-
versity of Agriculture, vol. 1, pp. 201-207.

Carrascal LM, Galvan I, Gordo O (2009). Partial 
least squares regression as an alternative to cur-
rent regression methods used in ecology. Oikos 
118: 681-690. - doi:  10.1111/j.1600-0706.2008. 
16881.x

Carter GA, Knapp AK (2001).  Leaf optical  pro-
perties in higher plants: linking spectral charac-
teristics to stress and chlorophyll concentration. 
American Journal of Botany 88: 677-684. - doi: 
10.2307/2657068

Carter GA (1993). Responses of leaf spectral re-
flectance  to  plant  stress.  American  Journal  of 
Botany 80: 239-43. - doi: 10.2307/2445346

Carter GA, Dell TR, Cibula WG (1996). Spectral 
reflectance characteristics and digital imagery of 
a pine needle blight  in  the southeastern United 
States. Canadian Journal of Forest Research 26: 
402-407. - doi: 10.1139/x26-045

Cho MA, Debba  P,  Mutanga  O,  Dudeni-Tlhone 
N,  Magadla  T,  Khuluse  SA  (2012).  Potential 
utility  of  the  spectral  red-edge  region  of  Sum-
bandilaSat  imagery  for  assessing  indigenous 
forest structure and health. International Journal 
of Applied Earth Observation and Geoinforma-
tion 16: 85-93. - doi: 10.1016/j.jag.2011.12.005

Ciesla  WM  (2000).  Remote  sensing  in  forest 
health  protection.  FHTET  Report  No.  00-03, 
Forest Health Technology Enterprise Team, Re-
mote Sensing Applications Center, USDA Forest 
Service, Salt Lake City, Utah, USA.

Datt B (1998). Remote sensing of chlorophyll a, 
chlorophyll b, chlorophyll a+b, and total carote-
noid content in  Eucalyptus leaves. Remote Sen-
sing  of  Environment  66:  111-121.  -  doi: 
10.1016/S0034-4257(98)00046-7

Eichhorn  J,  Roskams  P,  Ferretti  M,  Mues  V, 
Szepesi A, Durrant D (2010). Visual assessment 
of crown condition and damaging agents. Manu-
al Part IV. In: “Manual on Methods and Criteria 
for Harmonized Sampling, Assessment, Monito-
ring and Analysis of the Effects of Air Pollution 
on  Forests”.  UNECE  ICP  Forests  Programme 
Co-ordinating  Centre,  Hamburg,  Germany,  pp. 
49.

Eitel JUH, Keefe R F, Long DS, Davis A S, Vier-
ling  LA (2010).  Active  ground  optical  remote 
sensing  for  improved  monitoring  of  seedling 
stress in nurseries. Sensors 10: 2843-2850. - doi: 
10.3390/s100402843

Entcheva-Campbell  PK,  Rock  BN,  Martin  ME, 
Neefus  CD,  Irons  JR,  Middletin  EM,  Al-
brechtova J (2004). Detection of initial damage 
in  Norway spruce canopies  using hyperspectral 
airborne  data.  International  Journal  of  Remote 
Sensing 24: 5557-5583. - doi: 10.1080/0143116 
0410001726058

Fischer R, Lorenz M (2011). Forest condition  in 
Europe. Technical Report, ICP Forests and Fut-
Mon.  Work  Report  of  the  Institute  for  World 
Forestry  2011/1.  ICP  Forests,  Hamburg,  Ger-
many.

Gitelson  AA,  Merzlyak  MN  (1996).  Signature 

iForest (2013) 6: 30-36 35  © SISEF http://www.sisef.it/iforest/ 

http://dx.doi.org/10.1111/j.1600-0706.2008.16881.x
http://dx.doi.org/10.1111/j.1600-0706.2008.16881.x
http://dx.doi.org/10.1080/01431160410001726058
http://dx.doi.org/10.1080/01431160410001726058
http://dx.doi.org/10.3390/s100402843
http://dx.doi.org/10.1016/S0034-4257(98)00046-7
http://dx.doi.org/10.1016/j.jag.2011.12.005
http://dx.doi.org/10.1139/x26-045
http://dx.doi.org/10.2307/2445346
http://dx.doi.org/10.2307/2657068


Spectral reflectance of coniferous trees 

analysis of leaf reflectance spectra: algorithm de-
velopment  for  remote  sensing  of  chlorophyll. 
Journal of Plant Physiology 148: 494-500. - doi: 
10.1016/S0176-1617(96)80284-7

Gitelson AA, Gritz Y, Merzlyak MN (2003). Rela-
tionships  between  leaf  chlorophyll  content  and 
spectral  reflectance  and  algorithms  for  non-de-
structive chlorophyll assessment in higher plant 
leaves.  Journal  of  Plant  Physiology  160:  271-
282. - doi: 10.1078/0176-1617-00887

Horler DNH, Dockray M,  Barber  J  (1983).  The 
red edge of  plant  leaf reflectance.  International 
Journal  of  Remote  Sensing  4:  273-88.  -  doi: 
10.1080/01431168308948546

Huber  S,  Kneubuehler  M,  Psomas  A,  Itten  K, 
Zimmermann  N  (2008).  Estimating  foliar  bio-
chemistry  from  hyperspectral  data  in  mixed 
forest  canopy.  Forest  ecology and  management 
256:  491-501.  -  doi:  10.1016/j.foreco.2008.05. 
011

Luther JE, Carroll AL (1999). Development of an 
index of  balsam fir  vigor  by foliar  spectral  re-
flectance.  Remote  Sensing  of  Environment  69: 
241-252.  - doi:  10.1016/S0034-4257(99)00016-
4

Malenovský Z, Ufer C, Lhotáková Z, Clevers J G 
PW,  Schaepman  ME,  Albrechtová  J,  Cudlín  P 
(2006).  A new hyperspectral  index  for  chloro-
phyll estimation  of a forest canopy:  area under 
curve  normalised  to  maximal  band  depth 
between 650-725 nm. EARSeL eProceedings 5: 
161-172.

Manakos  I, Manevski  K, Petropoulos  GP, Elhag 
M, Kalaitzidis C (2010). Development of a spec-
tral  library for mediterranean  land  cover types. 
In:  Proceedings  of  the  “30th EARSeL Sympo-
sium:  Remote  Sensing  for  Science,  Education 
and  Natural  and  Cultural  Heritage”  (Reuter  R 
ed). Paris (France), 31 May - 3 June 2010,  pp. 
663-668.

Martin ME, Aber JD (1997). High spectral resolu-
tion remote sensing of forest canopy lignin,  ni-
trogen, and ecosystem processes. Ecological Ap-
plications 7: 431-443. - doi: 10.1890/1051-0761 
(1997)007[0431:HSRRSO]2.0.CO;2

Moorthy I, Miller J,  Noland TL (2008).  Estima-
ting chlorophyll concentration in conifer needles 
with  hyperspectral  data:  an  assessment  at  the 
needle and canopy level. Remote Sensing of En-
vironment 112: 2824-2838. - doi:  10.1016/j.rse. 
2008.01.013

Mozgeris  G,  Augustaitis  A,  Gečionis  A (2011). 
Small format aerial images to estimate the pine 
crown defoliation. In: Proceedings the “Fifth In-

ternational  Scientific  Conference  on  Rural  De-
velopment”.  Akademija,  Kaunas  distr.  (Lithua-
nia), 24-25 November 2011. Aleksandras Stulg-
inskis University, vol. 5, book 2, pp. 452-458.

Nidamanuri  RR,  Zbell  B  (2011).  Transferring 
spectral libraries of canopy reflectance for crop 
classification using hyperspectral remote sensing 
data.  Biosystems engineering 110:  231 - 246.  - 
doi: 10.1016/j.biosystemseng.2011.07.002

Nobuya M, Dobbertin M (2004). Within country 
accuracy  of  tree  crown  transparency  estimates 
using the image analysis system CROCO: a case 
study from Switzerland.  Environmental  Model-
ling and Software 19: 1089-1095. - doi: 10.1016/ 
j.envsoft.2003.10.009

Ozolinčius  R,  Stakenas  V (1996).  Forest  health 
monitoring  in  Lithuania:  1988-1995.  Lietuvos 
Mišku Institutas, Kaunas, Lithuania. [in Lithua-
nian]

Repšys J (1992). The optical properties of conife-
rous trees damaged by air pollution. Musu Girios 
1: 5-6.

Rock  BN,  Vogelmann  JE,  Williams  DL, Vogel-
mann AF, Hoshizaki T (1986). Remote detection 
of forest damage. BioScience 36: 439-445. - doi: 
10.2307/1310339

Shaw G, Manolakis  D (2002).  Signal processing 
for hyperspectral image exploitation.  IEEE Sig-
nal  Processing  Magazine  19:  12-16.  -  doi: 
10.1109/79.974715

Smith KL, Steven MD, Colls JJ (2004). Use of hy-
perspectral derivative  ratios  in  the  red-edge re-
gion  to  identify  plant  stress  responses  to  gas 
leaks. Remote Sensing of Environment 92: 207-
217. - doi: 10.1016/j.rse.2004.06.002

Solberg S,  Næsset  E,  Lange H,  Bollandsås  OM 
(2004). Remote sensing of forest health. Interna-
tional  Archieves  of  Photogrammetry,  Remote 
Sensing  and  Spatial  Information  Sciences,  vol. 
36 - 8/W2, pp. 161-166.

Somers  B,  Verbesselt  J,  Ampea  E  M,  Sims  N, 
Verstraetena W W, Coppina  P (2010).  Spectral 
mixture analysis to monitor defoliation in mixed-
aged  Eucalyptus  globulus Labill  plantations  in 
southern Australia using Landsat 5-TM and EO-
1 Hyperion data. International Journal of Applied 
Earth Observation and Geoinformation 12: 270-
277. - doi: 10.1016/j.jag.2010.03.005

State Forest Service (2011). Lithuanian statistical 
yearbook of forestry. Lutute, Kaunas, Lithuania.

Thenkabail PS, Enclona EA, Ashton MS, Van Der 
Meer V (2004). Accuracy assessments of hyper-
spectral  waveband  performance  for  vegetation 
analysis  applications.  Remote  Sensing of Envi-

ronment 91: 354-376. - doi:  10.1016/j.rse.2004. 
03.013

Treitz PM, Howarth PJ (1999). Hyperspectral re-
mote sensing for estimating biophysical parame-
ters  of  forest  ecosystems.  Progress  in  Physical 
Geography 23: 359-390.

Varshney  P,  Arora  M  (2004).  Advanced  image 
processing techniques for remotely sensed hyper-
spectral data. Springer Press, Berlin, Germany.

Vogelmann JE, Rock BN (1988). Assessing forest 
damage  in  high-elevation  coniferous  forests  in 
Vermont  and  New  Hampshire  using  thematic 
mapper  data.  Remote  Sensing  of  Environment 
24:  227-246.  -  doi:  10.1016/0034-4257(88) 
90027-2

Wang Q, Li P (2012).  Hyperspectral indices for 
estimating leaf biochemical properties in tempe-
rate deciduous forests: Comparison of simulated 
and  measured  reflectance  data  sets.  Ecological 
Indicators  14:  56-65.  -  doi:  10.1016/j.ecolind. 
2011.08.021

Wold  H (1966).  Estimation  of  principal  compo-
nents  and  related  models  by  iterative  least 
squares. In: “Multivariate Analysis” (Krishnaiah 
PR ed).  Academic  Press,  New York,  USA, pp. 
391-420.

Wold S, Esbensen K, Geladi P (1987).  Principal 
component  analysis.  Chemometrics  and  Intelli-
gent Laboratory Systems 2: 37-52. - doi: 10.1016 
/0169-7439(87)80084-9

Wold S, Sjostrom M, Eriksson L (2001). PLS-re-
gression: a basic tool of chemometrics. Chemo-
metrics  and  Intelligent  Laboratory Systems  58: 
109-130.  - doi:  10.1016/S0169-7439(01)00155-
1

Wulder MA, Dymond CC, White JC, Leckie DG, 
Carroll  AL  (2006).  Surveying  mountain  pine 
beetle  damage  of  forests:  a  review  of  remote 
sensing opportunities. Forest Ecology and Man-
agement  221  (1-3):  27-41.  -  doi:  10.1016/j.-
foreco.2005.09.021

Zarco-Tejada PJ, Miller JR, Harron J, Hu B, No-
land TL, Goel N, Mohammed GH, Sampson  P 
(2004).  Needle  chlorophyll  content  estimation 
through  model  inversion  using  hyperspectral 
data from boreal conifer forest canopies. Remote 
Sensing  of  Environment  89:  189-199.  -  doi: 
10.1016/j.rse.2002.06.002

Zomer RJ, Trabucco A, Ustin SL (2009). Building 
spectral libraries for wetlands land cover classi-
fication and hyperspectral remote sensing. Jour-
nal  of  Environmental  Management  90:  2170-
2177. - doi: 10.1016/j.jenvman.2007.06.028

© SISEF http://www.sisef.it/iforest/ 36  iForest (2013) 6: 30-36

http://dx.doi.org/10.1016/j.jenvman.2007.06.028
http://dx.doi.org/10.1016/j.rse.2002.06.002
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/j.ecolind.2011.08.021
http://dx.doi.org/10.1016/j.ecolind.2011.08.021
http://dx.doi.org/10.1016/0034-4257(88)90027-2
http://dx.doi.org/10.1016/0034-4257(88)90027-2
http://dx.doi.org/10.1016/j.rse.2004.03.013
http://dx.doi.org/10.1016/j.rse.2004.03.013
http://dx.doi.org/10.1016/j.jag.2010.03.005
http://dx.doi.org/10.1016/j.rse.2004.06.002
http://dx.doi.org/10.1109/79.974715
http://dx.doi.org/10.2307/1310339
http://dx.doi.org/10.1016/j.envsoft.2003.10.009
http://dx.doi.org/10.1016/j.envsoft.2003.10.009
http://dx.doi.org/10.1016/j.biosystemseng.2011.07.002
http://dx.doi.org/10.1016/j.rse.2008.01.013
http://dx.doi.org/10.1016/j.rse.2008.01.013
http://dx.doi.org/10.1890/1051-0761(1997)007%5B0431:HSRRSO%5D2.0.CO;2
http://dx.doi.org/10.1890/1051-0761(1997)007%5B0431:HSRRSO%5D2.0.CO;2
http://dx.doi.org/10.1016/S0034-4257(99)00016-4
http://dx.doi.org/10.1016/S0034-4257(99)00016-4
http://dx.doi.org/10.1016/j.foreco.2008.05.011
http://dx.doi.org/10.1016/j.foreco.2008.05.011
http://dx.doi.org/10.1080/01431168308948546
http://dx.doi.org/10.1078/0176-1617-00887
http://dx.doi.org/10.1016/S0176-1617(96)80284-7
http://dx.doi.org/10.1016/j.foreco.2005.09.021
http://dx.doi.org/10.1016/j.foreco.2005.09.021

	Spectral reflectance properties of healthy and stressed coniferous trees
	Introduction
	Materials and Methods
	Statistical Analyses
	Results 
	Discussion 
	Conclusions
	Acknowledgments 
	References


