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Introduction
The promising prospects  offered  by gene 

technologies,  especially  for  tree  breeding, 
have promoted their use in the forestry. An 
increasing  demand  of  renewable  resources 
has been predicted to meet the energy needs 
of a growing world population. In the range 
of different options of renewable resources, 
woody  biomass  plays  an  important  role 
mainly  originating  from  forests  including 
primary or  wild  forests.  Forest  plantations 
with improved genotypes might represent a 
solution for the increasing pressure on wild 
forest  ecosystems.  However,  ecological 

boundaries between wild forests and planta-
tions can represent a threat to their integrity.

Gene flow from non-native forest trees and 
taxa resulting from traditional breeding has 
been motive of concerns in  the past  (Hoe-
nicka  &  Fladung  2006).  These  concerns 
have increased since private companies and 
research  institutes  worldwide  show interest 
on incorporating genetic engineering into fo-
rest tree breeding programs. Release of tran-
sgenic trees harbouring particular genes into 
forest ecosystems would in fact represent an 
additional risk factor to natural ecosystems.

Until  now,  strategies  for  gene  flow avoi-
dance between non-native trees taxa derived 
from traditional breeding have been limited 
to  geographic  separation  of  sexual  compa-
tible species. The development of “gene con-
tainment” methods using genetic engineering 
is a promising solution for a more efficiently 
avoidance of undesired gene flow, not only 
from genetic  modified trees  (GM).  The in-
corporation of sterility genes into transgenic 
lines of trees was proposed to reduce or even 
avoid gene flow of transgenes into non-tran-
sgenic relatives (Strauss et al. 1995). An ad-
ditional advantage of sterile trees would be 
the reduction of energetic costs necessary for 
development  of  reproductive  structures 
(Brunner et al. 1998, Mouradov et al. 1998).

Various sterility gene constructs have been 

tested with different levels of success in crop 
plants,  e.g., by expression of deleterious ge-
nes in flower organs, like  barnase  (Paddon 
& Hartley 1986, Mariani et al. 1990, García-
Sogo et al. 2010), orfH522 (Nizampatnam et 
al. 2009), monooxygenase (MNX - Gan et al. 
2010), stilbene synthase (STS -  Fisher et al. 
1997, Höfig et al. 2006), the gene for riboso-
me inactivating protein (Palmiter et al. 1987) 
and RNA interference (Nawaz-ul-Rehman et 
al.  2007). Specific floral  regulatory promo-
ters to direct expression of genes in repro-
ductive structures have been found in crop 
plants,  e.g., TA29 promoter from Nicotiana 
tabacum (Koltunow et al.  1990,  Mariani et 
al. 1990) and forest tree species, e.g., PrMA-
LE1 from Pinus radiata (Höfig et al. 2003) 
and PTD from poplar (Skinner et al. 2003).

The number of publications on sterility in-
duction in forest trees is still very low (Mei-
lan et al. 2001, Skinner et al. 2003, Fladung 
& Hoenicka 2004, Lemmetyinen et al. 2004, 
Hoenicka et al. 2006, Wei et al. 2006). Most 
sterility approaches reported until now were 
based on gene constructs  used successfully 
in  crop  plants.  Heterologous floral  specific 
promoters  can  direct  activity  of  cytotoxic 
gene expression in non-target, vegetative tis-
sues (“leaky” expression) generating in some 
cases  a  lower  performance  of  transgenic 
plants (Lemmetyinen et al. 2004,  Meilan et 
al. 2001,  Skinner et al. 2003). Use of floral 
specific  promoters  from  forest  trees  have 
been proposed to overcome such handicaps 
(Skinner et al. 2003).

The  main  factor  hindering  biosafety  re-
search on forest trees is the prolonged vege-
tative phase. This phase is quite variable la-
sting  in  some  tree  species  until  40  years 
(e.g.,  Fagus  sylvatica L.  -  Meilan  1997). 
Therefore early flowering trees, either natu-
ral  or  transgenic  ones,  are  very  important 
tools for biosafety research. Most genes in-
volved in  the regulation  of  flowering have 
been discovered in Arabidopsis (reviewed in 
Liu  et  al.  2009).  However,  flowering  time 
genes have also been studied in woody plan-
ts like birch (Elo et al. 2001,  2007), poplar 
(Rottmann et al. 2000, Böhlenius et al. 2006, 
Hsu  et  al.  2006)  and  apple  (Wada  et  al. 
2002).

Several heterologous approaches with flo-
wering time genes have allowed induction of 
early flowering  in  perennials.  The  overex-
pression  of  BpMADS4  induce  early flowe-
ring  in  birch  (Betula  pendula  -  Elo  et  al. 
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Despite of the immense potential of gene technologies for tree breeding, re-
lease of genetic modified trees is still very rare. Biosafety concerns have hi-
therto limited application of gene technologies. The potential risks of transge-
nic trees, in particular transfer of recombinant DNA into the gene pool of a gi-
ven species via vertical gene transfer, have been motive of concern. Biosafety 
research may allow avoiding potential risks of this technology. However, the 
evaluation of strategies for prevention of vertical gene transfer, probably the 
most important concern toward transgenic trees, has been hindered by the 
long time they require to reach the reproductive phase. We tested different 
strategies for promoting early flowering in poplar, aiming the development of a 
system for biosafety studies on gene containment. Early flowering poplar con-
taining the 35S::LFY or HSP::FT gene constructs allowed first approaches for 
the faster evaluation of gene containment. However, some drawbacks, e.g., di-
sturbed vegetative growth and flower development, still limit their potential 
application on biosafety  research.  A non-transgenic hybrid  aspen showing a 
short vegetative phase was successfully used for the evaluation of the PrMA-
LE1::STS sterility gene construct.
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2007) and apple (Malus × domestica Borkh. 
-  Flachowsky et al. 2007), but not in poplar 
(Hoenicka et al. 2008). BpMADS4 transgenic 
lines are currently being used for apple bree-
ding  (Flachowsky  et  al.  2011).  The  apple 
gene  MdFT2,  homologous of  FT gene, pro-
moted  early flowering in  apple  and  poplar 
(Tränkner  et  al.  2010).  Arabidopsis flo-
wering time genes Leafy (Schultz & Haughn 
1991) and  Flowering  locus T (Blázquez & 
Weigel  1999)  allow the  hitherto  most  effi-
cient  early  flowering  induction  in  poplar 
(Weigel  &  Nilsson  1995,  Rottmann  et  al. 
2000, Zhang et al. 2010). Furthermore, it has 
been shown that transgenes can induce early 
flowering in trees more efficiently than cis-
genes  (Rottmann  et  al.  2000,  Zhang et  al. 
2010, Flachowsky et al. 2011, Tränkner et al. 
2010). Possibly, transgenes are less prone to 
“endogenous  repressors”  than  cisgenes 
(Rottmann et al. 2000).

In this study,  we evaluated different early 
flowering systems in poplar aiming their use 
on  biosafety  studies  on  gene  containment. 
We confirmed induction of sterility with the 
gene  construct  PrMALE1::STS in  the  non-
transgenic hybrid aspen clone T89.

Material and methods

Plant  material,  culture  and  genetic  
transformation

In vitro cultures of male hybrid aspen (Po-
pulus  tremula  L.  x  P.  tremuloides  Michx., 
clone  T89)  and  Populus  tremula  L.,  clone 
W52 were used for generation of transgenic 
lines. Plants were grown on solid McCown 
Woody  Plant  Medium  (WPM,  Duchefa 
M0220  -  Lloyd  & McCown 1980)  contai-
ning 2% Sacharose, 0.6% Agar (Agar Agar, 
Serva, 11396). Genetic transformations were 
carried  out  employing  the  Agrobacterium-
-mediated  approach  (Fladung  et  al.  1997) 
using  the  Agrobacterium strain  EHA105. 
WPM medium for the regeneration of tran-
sgenic plants was supplemented with 0.01% 
Pluronics F-68 (Sigma P-7061), thidiazuron 
(0.01 μM) and antibiotics, cefotaxime (500 
mg L-1) for Agrobacteria elimination, and ka-
namycin (50 mg L-1) or hygromycin (20 mg 
L-1) for selection of transgenic shoots. Early 

flowering  sterile  plants  (see  below)  were 
transferred to growth chambers (Weiss Tech-
nik) under the following culture conditions: 
light period: 16/8 (day/night), light intensity: 
300  µE  m-2 sec-1,  lamps:  Phillips  TLM 
140W/33RS, relative humidity: 70%, tempe-
rature: 22/19 °C. After a culture period of 6-
18 months in the growth chambers transge-
nic  plants  were  transferred  to,  and  further 
grown in,  a  standard  S1  greenhouse  under 
natural daylight conditions.

Induction of early flowering with gene-
tic transformation

Performance of early flowering poplar sy-
stems  based  on  gene  constructs  (Fig.  1) 
35S::LFY (Weigel & Nilsson 1995), 35S::FT 
(Böhlenius et al.  2006),  HSP::LFY  (see be-
low) and HSP::FT (Zhang et al. 2010) was 
evaluated. Both the  FT and  LFY constructs 
containing  Arabidopsis genes  were  kindly 
provided by O. Nilsson (Swedish University 
of  Agricultural  Sciences,  Umeå,  Sweden). 
HSP promoter is derived from the soybean 
heat-inducible promoter Hsp6871 (Schöffl et 
al.  1984).  The  HSP::LFY vector  was  con-
structed by DNA Cloning Service (Hamburg, 
Germany).

Cloning of gene  constructs:  (a)  HSP::FT: 
HSP promoter was ligated to FT cDNA, and 
was contained in the Gateway binary vector 
pK2GW7  (Karimi  et  al.  2002);  (b)  HSP:: 
LFY: LFY cDNA was ligated to binary vector 
p6-HSP-TP-OCS  (DNA  Cloning  Service, 
Hamburg, Germany) after digestion with Bgl  
II and  Xho I.  Activation of flowering time 
genes  was  carried  out  in  growth  chambers 
with a heat treatment (1h, 40 °C, 4-6 weeks).

Induction of sterility using genetic tran-
sformation

Poplar was transformed with the PrMALE1 

::STS  gene  construct  (Höfig  et  al.  2003), 
kindly provided by C. Walter (Forest Resear-
ch  Institute,  Rotorua,  New  Zealand).  Ge-
neration  of  transgenic  lines  containing  Pr-
MALE1::STS and one early flowering gene 
construct (HSP::FT or 35S::FT) was carried 
out using simultaneously two Agrobacterium 
strains, one containing the gene construct Pr-
MALE1::STS and the other one HSP::FT or 
35S::FT.  Transgenic  lines  containing  both 
gene constructs were selected using molecu-
lar analysis.

RNA extraction  and  reverse  transcrip-
tion

Tissues (leaves, stems and roots) were col-
lected and frozen in liquid N2 and stored at 
-80 °C until RNA extraction. Total RNA was 
isolated using the Plant RNA Isolation Mini 
Kit (Agilent, Wilmington, USA). Around 60 
mg  of  liquid  nitrogen  frozen  tissues  were 
ground in Eppendorf tubes using metal balls 
and a Retsch mill (Retsch MM2, Germany). 
RNA was quantified using spectrophotome-
tric OD260 measurements with a Nanodrop 
1000 (Thermoscientific,  Wilmington,  USA) 
and RNA quality was assessed by OD260/ 
OD280 and OD260/OD230 ratios (both ra-
tios  were maintained between 1.8 and 2.1) 
and using the Agilent  Bioanalyzer  (Agilent 
Technologies Inc.  Palo Alto, CA - RIN va-
lues > 6). Contaminating DNA was removed 
from RNA samples using the Ambion turbo 
DNA-free (Ambion,  Austin,  TX,  USA)  ac-
cording  to  the  manufacturer’s  protocol. 
cDNA was synthesized with 30 ng µl-1 RNA 
using  the  DyNAmo  cDNA  Synthesis  Kit 
(Finnzymes,  Espoo,  Finland)  with  Oligo 
(dT)15 primers according to  the manufactu-
rer’s instructions.

Expression  of  STS gene  in  transgenic  
plants

Expression of  STS was studied using RT- 
PCR. Gene  UBQII was used as a reference 
gene. Primers (Tab. 1) were designed using 
Primer3Plus  software  (Rozen  &  Skaletsky 
2000) with melting temperatures around 60 
°C. PCR reactions were done in a 20 μl vo-
lume containing 300 nM of each primer, 2 μl 
of cDNA sample (~3.5 ng of input RNA) and 
Maxima  Hot  Start  Taq  DNA  Polymerase 
(Fermentas,  St.  Leon-Rot,  Germany).  RT- 
PCR was performed using the following pa-
rameters: 10 min. at 95 °C and 40 cycles of 
95 °C for 30 sec, 60 °C for 1min and 72 °C 
for 1 min.
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Fig. 1 - Gene constructs used for genetic transformation.

Tab. 1 - Sequence of primers used in this study (5’- 3’).

Primer Forward primer Reverse primer
PrMALE1 GGT GCC CAA AGC ATT GTA GCA CCA CGA CGT TCC CGT TTG AT
STS AAA CGC TCA ACG TGC CAA GG AGT TTC CGG CAA TGG CTC CT
LFY GTT GGT GAA CGG TAC GGT AT ACT AGA AAC GCA AGT CGT CG
FT GTT GGA GAC GTT CTT GAT CCG TCT TCT TCC TCC GCA GCC ACT
UBQII ACA CCA TCG ACA ACG TCA AA GTG AGC GCA ATT CAG AGA CA
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Extraction of DNA and molecular ana-
lysis

DNA extraction  was  followed  by a  stan-
dard protocol adapted from Doyle & Doyle 
(1987),  using 0.5-1.0 g leaf material  and a 
modified  extraction  buffer  [2%  alkyltrime-
thylammonium  bromide  (ATMAB),  0.1  M 
Tris-HCl, 0.02 M disodium-EDTA (pH 8.0), 
1.4 M NaCl, 1% PVP]. Standard PCR tech-
niques were used to detect and amplify tran-
sgenes.  The PCR reaction used for  all  pri-
mers (Tab. 1) consisted of 94 °C / 2 min, fol-
lowed by 40 cycles (94 °C / 1 min, Ta / 2 
min,  72 °C /  2 min) and finally 72 °C /  5 
min.  Southern  hybridisations  were  carried 
out with 20 μg genomic DNA. DNA was di-
gested enzymatically and separated using a 
1.5%  agarose  gel  and  transferred  onto  a 
membrane by capillary transfer (Nylon mem-
brane positively charged, Roche) in alkaline 

conditions.  Prehybridization  and  hybridiza-
tion were performed with the non-radiactive 
DIG  (digoxigenine)  system  using  DIG- 
dUTP-labelled gene probes (Fladung & Ahu-
ja 1995). DIG probes were prepared with a 
PCR  amplification  Kit  (PCR  DIG  Probe 
Synthesis  Kit,  Roche)  using  the  different 
plasmids  with  the  respective  primer  pairs. 
Probe  hybridization  and  chemiluminescent 
reaction were performed according to Roche 
instructions  with  some  modifications  (Fla-
dung & Ahuja 1995).

Microscopic observation of anthers de-
rived from transgenic plants

Anthers obtained form early flowering and 
early flowering-sterile plants were observed 
under an optical microscope to confirm pre-
sence  or  absence  of  pollen  grains.  Pollen 
germination tests were carried out with fresh 

pollen  using  culture  medium  (Saccharose 
10%, Phytagel 7.5 g L-1).  FDA test: micro-
spore viability was  estimated  staining with 
fluorescein diacetate (Widholm 1972).

Results

Induction of  early flowering in  poplar  
with genetic transformation

Genetic transformation was performed with 
different gene constructs containing the 35S 
or HSP promoter and the flowering time ge-
nes LFY or FT. We obtained five to ten tran-
sgenic lines with each gene construct. Tran-
sgenic  lines  obtained  were  analyzed  with 
PCR  and  Southern-Blot  analysis  (Fig.  2). 
Single  copy transgenic  lines  were  selected 
for further studies.

35S::LFY: early flowering lines where ob-
tained  with  both  poplar  clones  (T89  and 
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Fig. 2 - (A): Southern-blot analysis of DNA extrac-
ted from HSP::FT aspen leaves. Genomic DNA re-
striction with Sac I. Twenty µg of genomic DNA 
from leaves were enzymatically digested, electro-
phorized in an agarose gel, blotted and subsequently 
detected using a digoxigenine-labelled FT probe; 
(B): Southern-blot analysis of DNA extracted from 
PrMALE1::STS aspen leaves. Genomic DNA restric-
tion with Hind III. Twenty µg of genomic DNA from 
leaves were enzymatically digested, electrophorated 
in an agarose gel, blotted and subsequently detected 
using a digoxigenine-labelled STS probe.

Tab. 2 - Genetic transformation of poplar with flowering time genes. (*1): flowers with/lacking pollen grains can be found; (*2): normal ve -
getative growth until heat treatment; (*3): flowers contain seldom pollen grains.

Gene construct Poplar clone
Flowering

Vegetative growth
In vitro (Pollen) Greenhouse (Pollen)

35S::LFY T89 + (-) + (+*1) dwarf
W52 + (-) + (+*1) dwarf

HSP::LFY T89 - - normal *2
W52 - - normal *2

35S::FT T89 + (-) - normal
W52 - - normal

HSP::FT T89 + (-) + (*3) normal
W52 + (-) + (*3) normal
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Fig. 3 - Flowering induction in poplar using gene-
tic transformation with LFY gene. Arrow shows 
single flower. 35S::LFY: dwarf vegetative growth 
(a), single flowers (b); HSP::LFY: normal vegeta-
tive growth (c), disturbed growth after heat treat-
ment (1h, 40°C, 4-6 weeks). No flowers were 
obtained.

Fig. 4 - Flowering induction in poplar using genetic transformation with flowering time genes. Arrows show single flowers. 35S::FT: quite 
normal vegetative growth (a), catkin (b); HSP::FT: normal vegetative growth (c), catkin (d); non-transgenic T89 plants: vegetative growth 
(e), catkins (f).
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Fig. 6 - Genetic transformation of wildtype hybrid aspen clone T89 with PrMALE1::STS.  (a): catkin type I (sterile); (b): disturbed anther 
growth; (c): anthers without pollen grains; (d): catkin type II (non-sterile); (e): anthers with pollen grains; (f): pollen grains.

Fig. 5 - Catkin and anthers from early flowering heat-inducible poplar (a, b, c) and transgenic line T194-1 (d, e, f) transformed with the ste -
rility construct PrMALE1::STS.  HSP::FT: (a) catkin of HSP::FT plant; (b) anthers containing abundant pollen grains (seldom occurring 
event); (c): anthers containing low number of disturbed pollen grains. HSP::FT + PrMALE1::STS (Line T194-1): (d) abnormal catkin from 
early flowering transgenic line transformed with sterility gene construct PrMALE1::STS; (e): anther with sterile pollen grains; (f): anther de-
void of pollen grains.
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W52). This early flowering model (Weigel & 
Nilsson 1995) was used for biosafety resear-
ch before (Skinner et al. 2003,  Hoenicka et 
al. 2006).

Incidence  of  sterility  and  disturbed  plant 
growth reduces the utility of this model for 
biosafety  research  (Hoenicka  et  al.  2006). 
Early flowering occurs in spring and during 
the  summer  time.  However,  pollen  grains 
were obtained only from greenhouse plants 
in spring. Furthermore, the presence of pol-
len in flowers was very variable, fluctuating 
yearly between 0% (only sterile flowers) to 
100%.  Out  of  these  results,  we  concluded 
that  LFY effectively promotes flowering but 
not microsporogenesis.

HSP::LFY: The rationale behind promoter 
replacement, HSP instead of 35S promoter, 
was  the  avoidance  of  dwarf  plant  growth 
caused by constitutive LFY expression. This 
approach allowed to obtain transgenic plants 
with a normal vegetative growth. However, 
heat-treatment disturbed plant growth (indi-
cating  LFY expression),  and  no  flowering 
could be obtained (Fig. 3). 

35S::FT:  Only one transgenic  line out of 
seven obtained in total showed early flowe-
ring under in vitro and growth chamber con-
ditions. The flowers obtained under growth 
chamber conditions resembled strongly natu-
rally developed poplar catkins (Fig. 4). Ho-
wever, early flowering was not stable and af-
ter one to two years no more flowers develo-
ped.

HSP::FT: The expression of the  FT gene 
regulated by the heat-inducible promoter al-
lowed  effective  flowering  induction  and  a 
normal  looking plant  phenotype.  Early flo-
wering lines where obtained with both  po-
plar clones (T89 and W52). HSP::FT flowers 
are grouped in catkins resembling those from 
naturally grown poplar.  However,  there  are 
still differences between naturally developed 
(wild) and HSP::FT poplar flowers (Fig. 4): 
no  normal  flower  buds  developed,  catkin 
bracts  were  absent  and  microsporogenesis 
was not induced. Some few flowers, derived 
from  summer  heat-treated  plants  (Tab.  2), 
showed pollen grains  the next  spring (Fig.
5c-d).  However,  flowers  obtained  in  the 
summer  after  the  heat  treatment  lacked  al-
ways pollen grains.

Evaluation  of  gene  containment  stra-
tegies in poplar

Transgenic lines were analyzed with PCR 
and Southern blot experiments (Fig. 2). Ge-
netic transformation approach using the po-
plar wildtype strain W52 and combining two 
Agrobacterium strains,  containing  the  Pr-
MALE1::STS and one early flowering gene 
construct  (35S::FT or  HSP::FT), produced 
many transgenic lines containing one single 
gene construct but only two lines containing 
both  gene  constructs,  lines  T198-A  and 
T194-1  (Fig.  2).  The  line  T198-A (PrMA-
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Fig.  8 - Catkin development in transgenic PrMALE1::STS hybrid aspen clone T89 (Line 
T199-1). Flower buds (I, II, III, IV, V), sterile (VI type I) and non-sterile (VI type II) catkins.

Fig. 9 - Stilbene synthese gene (STS) expression in flower buds and catkins at different deve-
lopmental stages (see Fig. 8) of the PrMALE1::STS transgenic line T199-1. STS activity was 
detected in flower buds at the stage V (type I). UBQII gene was used as a control.

Fig. 7 - Viability tests of pollen grains from (catkins type II, line T199-1): (a) FDA test; (b)  
pollen germination tests.



Early flowering and genetic containment in transgenic poplar 

LE1::STS/35S::FT)  transformed  with 
35S::FT did not developed flowers under in  
vitro or  greenhouse  conditions.  Similar  re-
sults were obtained with single 35S::FT tran-
sgenic lines,  as mentioned before. Transge-
nic line T194-1 (PrMALE1::STS/HSP::  FT) 
containing  the  HSP::FT  produced  catkins 
with disturbed development (Fig.  5).  How-
ever, due to disturbed pollen development in 
HSP::FT poplar, no clear conclusions can be 
drawn  regarding  efficiency  of  the 
PrMALE1::STS sterility  with  the  poplar 
wildtype  strain  W52  containing  this  early 
flowering system.

Genetic transformation of the non-transge-
nic hybrid aspen clone T89 allowed a more 
reliable evaluation of the sterility efficiency 
of PrMALE1::STS gene construct five years 
after genetic transformation. Transgenic line 
T199-1 contained the sterility gene construct 
PrMALE1::STS.  Vegetative  growth  of  Pr-
MALE1::STS transgenic  plants  resembled 
that of non-transgenic control plants. Deve-
lopment  was  disturbed  in  68%  of  catkins 
(type I catkins),  and those catkins were la-
cking pollen grains (Fig. 6,  Tab. 3). Howe-
ver, pollen grains were obtained from some 
normal-looking catkins (type II catkins). The 
presence of  viable  pollen  grains  in  catkins 
type II was confirmed with FDA tests, in vi-
tro germination and crossings (Tab.  3,  Fig.
7). Expression studies of STS gene were car-
ried  out  in  young  catkins  from transgenic 
plants (Fig.  9).  The expression of  STS was 
confirmed only in young catkins type I and 
not in type II,  and no leaky expression was 
detected in  leaves,  stems or  roots  (Fig.  9). 
STS expression was weak in type I catkins at 
phase IV and stronger during phase V (Fig. 8 
and Fig. 9). No STS expression was detected 
in mature type I catkins. 

Discussion

Early flowering in poplar
The  development  of  more  efficient  early 

flowering poplar systems would allow faster 
biosafety  studies  on  genetic  containment. 
Therefore, we evaluated different methods to 
induce early flowering in poplar. After some 
unsuccessful approaches using growth inhi-
bitors like Paclobutrazol and Daminozide in 
the past (unpublished results), we focused on 

genetic  transformation  with  flowering  time 
genes for achieving this aim. The constitu-
tive expression of the  LFY gene (Weigel & 
Nilsson 1995) allowed us initiating contain-
ment  studies  in  poplar  (Hoenicka  et  al. 
2006).  However,  overexpression  of  LFY 
produces  many  side  effects  on  vegetative 
growth and flower development, which can 
be detrimental for their broad use in biosa-
fety research.

We tested a new approach,  with the HSP 
promoter, expecting an effective and less de-
trimental  effect  of  LFY expression  on  flo-
wering and plant growth. Our results showed 
that vegetative growth was significantly im-
proved when LFY expression was under the 
control of the HSP promoter. However, acti-
vation of  LFY through heat treatments (1h, 
40°C, 4-6 weeks), disturbed vegetative gro-
wth and no flowering was obtained. It is not 
clear  why a  short  LFY  activation  still  di-
sturbs vegetative growth strongly and do not 
induce flowering. Short gene activation with 
the HSP promoter did not lead to an impro-
vement  of  the  LFY early flowering  poplar 
model.

Early flowering systems based on the  FT 
gene from Arabidopsis,  35S::FT and HSP:: 
FT, were successful on flower induction. Ho-
wever, disturbed microsporogenesis is still a 
problem. The constitutive overexpression of 
FT  promoted  development  of  normal  loo-
king catkins during in vitro culture and gro-
wth  chamber  cultivation.  However,  no  flo-
wers were developed on 35S::FT transgenic 
poplar  grown  in  the  greenhouse  (Tab.  2). 
Gene  silencing  of  FT or  some  other  flo-
wering  time  genes  may  be  avoiding  long 
term  flowering  in  35S::FT system.  The 
HSP::FT  gene  construct  allowed  a  much 
more reliable flower induction compared to 
35S::FT. However, pollen grains were obtai-
ned very seldom, and only during spring in 
summer heat-treated greenhouse plants (Tab.
2).

Several approaches have been successful of 
early induction of completely fertile flowers 
in woody plants. The constitutive expression 
of CiFT (the citrus FT homologue) in Trifo-
liate orange (Poncirus trifoliata L. - Endo et 
al.  2005),  LFY or  AP1 in  Carrizo  citrange 
(Citrus sinensis L. Osbeck × Poncirus trifo-
liata  L.  Raf.  -  Peña  et  al.  2001)  and  Bp-

MADS4 from birch (Elo et al. 2007) in apple 
(Malus domestica Borkh. - Flachowsky et al. 
2007) induced early formation of fertile flo-
wers. However, phenotype induced by intro-
duced flowering time genes is very variable 
depending of the plant species. For instance, 
the BpMADS4 gene construct from birch was 
also  transferred  to  poplar;  instead  of  early 
flower formation a retarded senescence was 
observed in resulting transgenic lines (Hoe-
nicka et al. 2008). Thus, it is not clear why 
the  transformation  with  a  single  gene  can 
promote the development of flowers and pol-
len grains in some plant species but not in 
others.

Hitherto  available  transgenic  early flowe-
ring  poplar  models  show many drawbacks 
when used as standard tool in biosafety re-
search.  Disturbed microsporogenesis is still 
the main problem detected in those models. 
Research aiming improvement  of early flo-
wering may provide a more efficient tool for 
this  aim in  the next  future.  Use of  natural 
early flowering clones, as it has been repor-
ted for poplar (Meilan et al. 2004), may re-
present a reliable alternative for such studies. 
Our  results  showed  that  the  hybrid  aspen 
T89 represent an appropriate choice for such 
studies as flowers were obtained four to five 
years  after  genetic  transformation;  Populus  
tremula L. clones begin flowering usually af-
ter a vegetative phase of seven to ten years. 
However,  development  of  faster  flowering 
systems would facilitate application on bio-
safety studies. The improvement of early flo-
wering system based on genetic transforma-
tion can be carried out with some other flo-
wering genes (single gene approach) or fol-
lowing a co-transformation strategy with flo-
wering genes (gene stacking approach).

Evaluation of gene containment strate-
gies in poplar 

Biosafety  studies  were  initiated  in  our 
group with the first available early flowering 
model, 35S::LFY  (Weigel & Nilsson 1995). 
In a former publication, we showed with this 
model that genetic transformation with CGP-
DHC::Vst1 promoted  sterility  in  poplar 
(Hoenicka et  al.  2006). However,  the weak 
performance of 35S::LFY  was a strong bur-
den for generation and maintenance of dou-
ble transgenic lines with other sterility con-
structs, e.g., TA29::Barnase (unpublished re-
sults). Those transgenic lines showed a very 
weak performance, and could not be grown 
under  greenhouse  conditions.  We  suppose 
that leaky Barnase expression, due to unspe-
cific TA29 promoter activity (Li et al. 2007), 
has  represented  a  strong  burden  for  35S:: 
LFY poplar.

Important  progress  has  been  reached  on 
flowering time regulation in plants (reviewed 
in  Turnbull 2011). Consequently, we incor-
porated new early flowering models into our 
research. Two gene constructs based on the 
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Tab. 3 - Frequency of sterility in catkins from PrMALE1::STS transgenic hybrid aspen clone 
T89. (*): no pollen grains.

Catkins Catkins 
with pollen

in vitro 
growth FDA Crossings

Catkin type I 0/15
(0 %)

* * *

Catkin type II 7/7
(100 %)

+ + +

Catkins obtained in total 22
(32%)

+ + +
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FT gene,  HSP::FT and 35S::FT,  were used 
for early flowering induction. The vegetative 
growth  and  flower  development  of  double 
transgenic  lines  (T194-1  and  T198-A)  was 
significantly  improved  with  both  models. 
However,  both  systems  do  not  represent  a 
good option for biosafety studies, due to di-
sturbed pollen development.

In the frame of our biosafety work, a field 
release  was  also  planed.  Therefore,  trans-
genic lines were also generated with normal 
flowering  poplar  W52  (non-transgenic). 
Some genetic transformations were also car-
ried out  with hybrid aspen clone T89.  Re-
sulting transgenic  lines  were maintained  in 
the greenhouse for many years. However, no 
field release could be carried out, due to the 
increasing legal restrictions toward GMOs in 
Germany. After four years in the greenhouse, 
we detected first flowers in hybrid aspen clo-
ne T89 containing the MALE1::STS sterility 
construct (transgenic line T199-1).  This re-
sult was surprising, because other poplar clo-
nes used in our institute flower only after se-
ven to ten years.

Hybrid aspen clone T89 allowed us a first 
approach for evaluation of the MALE1::STS 
sterility  construct  under  controlled  condi-
tions.  STS-induced  male  sterility using the 
gymnosperm  promoter  PrMALE1  was  de-
monstrated  in  tobacco  before  (Höfig  et  al. 
2003). STS inhibits flavonol biosynthesis in 
the  tapetum,  leading  to  a  disturbed  pollen 
development.  The number of  pollen  grains 
was reduced and a very low pollen germina-
tion  was  reported  in  2/10  transgenic  lines 
(Höfig et al. 2003). In hybrid aspen, pollen 
development  was disturbed in  68% of cat-
kins.  We confirmed specific  activity of Pr-
MALE1 in catkins (Fig. 9). However, a low 
activity of this promoter in some cells, due 
to variable gene expression level, may be a 
possible reason for presence of viable pollen 
grains in some catkins. Epigenetic modifica-
tions may result in a mosaic gene expression 
(Bastar  et  al.  2004,  Robbins  et  al.  2009, 
Freeman et al.  2011). T-DNA positional ef-
fects may be playing an important role too 
(Kumar  &  Fladung  2001).  These  results 
were derived from nine ramets derived from 
the same transgenic lines. A higher number 
of transgenic lines would possible allow ob-
taining lines showing a more efficient sterili-
ty induction.
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