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Introduction
Pollution of soil and agricultural land is a 

complex and serious phenomenon that in re
cent  decades  has  increased its  negative  ef
fects  on the environment.  Transfer  of toxic 
elements to human food chain is a concrete 
danger that has to be faced, taking into ac
count the possibility for plants to accumulate 
and  translocate  contaminants  to  edible  and 
harvested parts (Kloke et al. 1984,  Renzoni 
et al. 1998, Dudka & Miller 1999, McLaugh
lin  et  al.  1999,  Puschenreiter  et  al.  2005). 
Traditional technologies for removal of pol
lutants  can  be  successful  in  specific  situ
ations, but costs associated with these tech
nologies are very high. There is an active ef
fort  to  develop  new,  more  cost-effective 
methods to remediate contamination of pol
luted soils, hence attention is now focusing 
on  innovative  biological  technologies  such 
as  phytoremediation,  based  on  the  use  of 
plants  to  extract,  sequester  and/or  detoxify 

pollutants  (Salt  et  al.  1998).  The  develop
ment  of  phytoremediation  technologies  is 
continuing,  involving  transgenic  and  non
transgenic  approaches,  as  well  as  different 
biological, technical, social, and economical 
aspects.  Biotechnologies  applied to  investi
gating the remediation capability of woody 
plants  are  increasingly  showing  their  effi
cacy,  hence some aspects of their exploita
tion are presented here. 

The exploitation of in vitro culture, the role 
of endophytic bacteria and mychorrizas, and 
the  efforts  to  enhance uptake  capacity  and 
tolerance to heavy metals by genetic engin
eering are therefore considered in the follow
ing chapters. 

Woody plants and 
phytoremediation

Twenty-five years ago, studies on phytore
mediation  techniques  were  rather  scarce; 
now the scientific and social interest on this 
subject has increased substantially after the 
increasing pressure of public opinion. 

The  use  of  plants  to  decontaminate  soils 
and waters has been developed only recently, 
the first reports appearing in the eighties, fol
lowed by more exhaustive articles during the 
nineties  (Chaney  1983,  Baker  et  al.  1994, 
Cunningham  et  al.  1995,  Salt  et  al.  1995, 
Raskin et al. 1997). Much effort still has to 
be directed towards an understanding of the 
basic  mechanisms  and  towards  improving 
knowledge of the applications (Marmiroli et 
al. 2006), but its usefulness has been demon

strated in many sites and this technology is 
now used by several environmental compa
nies (Glass 2000). 

Phytoremediation is based on the removal 
of  contaminants  from  the  soil  by  mecha
nisms  such as  phytoextraction,  phytodegra
dation, rhizofiltration, phytostabilization and 
phytovolatilization (Salt et al. 1995), but the 
mechanisms  involved  in  heavy  metal  re
mediation are limited to uptake, adsorption, 
transport  and  translocation,  sequestration 
into  vacuoles,  hyperaccumulation  and,  in 
some  cases,  volatilization  (Meagher  2000). 
Within this frame, studies on allocation plas
ticity and plant-metal partitioning can be of 
great  significance (Audet & Charest  2008). 
When  present  at  increased  concentrations, 
both essential (copper, iron, manganese, mo
lybdenum,  zinc)  and  non-essential  metals 
(e.g.,  cadmium,  chromium,  lead,  mercury) 
are toxic. Mercury and selenium can also be 
converted  by plants into a volatile  form to 
release  and  dilute  into  the  atmosphere. 
Heavy metals cannot be metabolized, there
fore  the  only  possible  strategy  to  apply  is 
their extraction from contaminated soil and 
transfer to the smaller volume of harvestable 
plants for their disposal (Salt et al. 1995, Ku
mar  et  al.  1995,  Raskin  et  al.  1997,  Pad
mavathiamma & Li 2007); biomass can also 
be used in producing energy and, if econo
mically profitable, metals can be eventually 
recovered (Zacchini et al. 2009). 

It must be stressed that some processes can 
limit  the  efficacy  of  plants  in  phytoreme
diation, such as the availability of the toxic 
metal ions in the soil for root uptaking, their 
rate of translocation from roots to shoots and 
the level  of  tolerance,  the rate  of chemical 
transformation  into  less  toxic  compounds 
(Prasad  2003).  At  the  basis,  we  find  the 
mechanisms implicated in plant metal  tole
rance and homeostasis  (reviewed by  Clem
ens  2001).  Remediation  using  plants  may 
take longer than other technologies, but the 
most  relevant  limitation  is  that  it  is  most 
suited  to  cases  where  contaminants  are 
present at shallow levels within the root lay
er. 

Phytoremediation technology has been re
cently extensively reviewed (Salt et al. 1998, 
Meagher 2000, Dietz & Schnoor 2001,  Bar
celó & Poschenrieder 2003,  Suresh & Rav
ishankar  2004,  Newman & Reynolds 2005, 
Pilon-Smith  &  Freeman  2006,  Audet  & 
Charest  2007a)  and  several  species  have 
been classified as hyperaccumulators and ex
tensively investigated (Reeves 1992,  Peer et 
al. 2005). However, on a large scale, metal 
uptake  by  trees  can  be  more  effective, 
mainly because of a deeper root system and 
a greater yield of biomass (Greger & Land
berg 1999, Fischerová et al. 2006). High pro
ductivity and elevated uptake and transloca
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tion of pollutants to the harvestable biomass 
are the basis for efficient  in situ restoration 
by  means  of  vascular  plants  (Lasat  2002, 
Pulford  &  Dickinson  2005,  Chaney  et  al. 
2007). 

Some  woody  species  can  be  advantage
ously used also for phytoremediation of soils 
and  groundwater  from  organic  pollutants 
(Corseuil & Moreno 2001) and hydrocarbons 
(Thompson et  al.  1998,  Yoon et  al.  2006). 
The potential  in  phytoremediation  of metal 
contaminated soils expressed by forest trees 
has been assessed for several species in re
cent  years  (Arduini  et  al.  1996,  Pisano  & 
Rockwood 1997,  Kozlov et  al.  2000,  Mau
rice  &  Lagerkvist  2000,  Prasad  &  Freitas 
2000,  Kopponen et al.  2001,  Rosselli et al. 
2003, Pulford & Watson 2003, French et al. 
2006,  Meers et al. 2007, Unterbrunner et al. 
2007, Brunner et al. 2008, Domínguez et al. 
2008). Resistance to metals often appears to 
be clone- or hybrid-specific rather than spe
cies-specific (Punshon & Dickinson 1999). 

Poplars are particularly suitable for remedi
ation purposes (Dix et  al.  1997,  Burken  & 
Schnoor  1998,  Schnoor  2000),  having  al
ready been considered for trials on metal to
lerance in in vivo (Lingua et al. 2005) and in 
vitro observations  (Franchin  et  al.  2007). 
Salicaceae are also reported to grow even in 
severe  soil  conditions  and  to  accumulate 
heavy  metals  (Pulford  &  Watson  2003, 
Berndes et al. 2004). Many studies have thus 
been focused on the use of willows and pop
lars in phytoextraction (Riddell-Black 1994, 
Labreque et al.  1995,  Bañuelos et al. 1999, 
Robinson  et  al.  2000,  Aronsson  &  Perttu 
2001,  Granel  et  al.  2002,  Klang-Westin  & 
Perrtu 2002,  Hammer et al. 2003,  Vyslouz
ilová  et  al.  2003,  Vervaeke  et  al.  2003, 
Madejou et al. 2004,  Sebastiani et al. 2004, 
Kuzovkina et al. 2004, Robinson et al. 2005, 
Giachetti & Sebastiani 2006, Dos Santos Ut
mazian et al. 2007, Wieshammer et al. 2007, 
Jensen et al. 2009). These species can be ad
vantageously exploited in short rotation cop
pice cultures (SRC), a strategy whose appli
cation  in  phytoremediation  presents  intere
sting  and  economically  promising  perspe
ctives  (Scarascia-Mugnozza  et  al.  1997, 
Paulson et al. 2003, Laureysens et al. 2004a, 
Laureysens  et  al.  2004b,  Rockwood  et  al. 
2004,  Dickinson & Pulford 2005, Witters et 
al. 2009). 

Use of in vitro cultures for 
research on phytoremediation

The inherent difficulties  of experimenting 
on very large long-lived organisms such as 
forest  trees,  motivates  the  development  of 
model  systems.  Besides the exploitation  of 
hydroponic cultures, the in vitro model sys
tems using shoot and cell cultures of plants 
demonstrated to be a useful tool for investi
gating efficiency of metal uptake and trans
location (Castiglione et  al.  2007).  Cell  and 

organ  culture,  in  fact,  as  well  as  hydro
ponics, allow very fast accumulation of data 
in comparison with whole plant experiments 
under  field  conditions  (Golan-Goldhirsh  et 
al. 2004), and offer the advantage of testing 
the effects of contaminants under controlled 
conditions (Harms 1992). Hydroponic scree
ning is often used to evaluate tolerance, ac
cumulation and translocation in plants. Wat
son et al. (2003) demonstrated in  Salix that 
results obtained in hydroponics and in field 
experiments are comparable. It is always ad
visable,  however,  to  confirm data  obtained 
by hydroponic tests by field performance tri
als.  Using  this  technique,  several  studies 
have concerned, for instance, the response of 
willows  to  a  metal  cocktail  (Watson et  al. 
1999) and of willows and poplars to the pre
sence  of  cadmium (Šottníková  et  al.  2003, 
Lunácková et al. 2003, Dos Santos Utmazian 
et al. 2007, Zacchini et al. 2009), the respon
se of a clone of  Populus x  euramericana to 
high concentrations of copper (Borghi et al. 
2007),  the mechanism of  resistance to  alu
minium of  Picea abies (Heim et al.  1999), 
the determination of the role of glutathione 
reductase metabolism in the defence of pop
lar  (Populus  deltoides x  P.  nigra)  against 
high  zinc  concentration  (Di  Baccio  et  al. 
2005). 

As stated by Golan-Goldhirsh et al. (2004), 
the use of in vitro systems enables dissection 
of the complex system of plant, soil, and mi
crobial interaction in order to evaluate the ef
fect of stress factors on metabolism, specific 
enzymes  and  metabolites  involved  in  plant 
response to the pollutant. For many woody 
species, moreover, the application of in vitro 
propagation techniques, allows for fast plant 
production and the application of promising 
genetic  engineering  programs  (Confalonieri 
et al. 2003, Lyyra et al. 2006). 

High concentration of zinc has been found 
to negatively  affect  the photosynthetic  ma
chinery in poplar: inhibition of adventitious 
root  formation  and  leaf  chlorosis  indicated 
that the clone used was tolerant to external 
concentrations less  than or  equal  to  1 mM 
(Castiglione  et  al.  2007),  while  in  Euca
lyptus  globulus moderate  concentrations  of 
this metal were shown to either enhance or 
have  no effect  on rooting (Schwambach et 
al.  2005).  Phytoremediation  potentials  of 
poplar  lines  (Populus  nigra and  transgenic 
P.  canescens) were  investigated  using  in 
vitro leaf discs cultures and found that Zinc2+ 

was phytotoxic  only at  high  concentrations 
(10−2 to 10−1 M) in all P. canescens lines, but 
P. nigra was more sensitive (Bittsanszky et 
al. 2005). Cadmium added to the culture me
dium was shown to reduce the fresh and dry 
weights and the shoot length of white birch, 
while root length was not affected (Fernán
dez et al. 2008). Copper at a concentration of 
0.05 mM, manganese at 0.80 mM, and zinc 
at  0.12  mM  showed  a  negative  effect  on 

shoot growth (number of shoots per explant 
and  shoot  length)  in  Ailanthus  altissima, 
considered  a  fast-growing  and  contamina
tion-resistant species (Gatti 2008). Zinc was 
found  toxic  in  aspen  (Populus  tremula x 
tremuloides) cultures at 0.5 mM concentra
tion,  while  lead  at  the  same  concentration 
did not show toxic effects and was accumu
lated at 3500 μg per g of biomass (Kalisová-
Spirochová et al. 2003). In vitro studies were 
also developed to investigate  the effects  of 
high  concentrations  of  zinc  and  copper  on 
the biosynthesis  and accumulation  of poly
amine  in  Populus  alba (Franchin  et  al. 
2007). On the basis of leaf symptoms, rate of 
adventitious  root  formation  and  ethylene 
production, it was found that Zn at 0.5-1 mM 
concentration was transiently toxic, while at 
2-4  mM  was  increasingly  toxic.  Free  and 
conjugated putrescine and spermidine accu
mulated  proportionally  to  toxicity;  also Cu 
strongly reduced rooting already at 5 μM and 
caused severe, dose-dependent toxicity sym
ptoms  (shoot  chlorosis  and  necrosis)  using 
concentrations  up  to  500  μM.  In  in  vitro 
growing  microshoots  of  Populus  alba,  the 
effect  of  high  concentrations  of  cadmium, 
copper,  zinc,  and arsenic  was  investigated, 
showing differences in the response of dif
ferent clones (Di Lonardo et al. 2011). Axen
ic poplar tumor cell cultures were tested for 
demonstrating the capability of taking up tri
chloroethylene  (TCE)  and  degrading  it  to 
several known metabolic products (Newman 
et  al.  1997),  while  poplar  (Populus  delto
ides×P. nigra) in vitro culture has been used 
for  developing  mathematical  models  to 
define  degradation  pathways  of  nitramine 
compounds within plant cells (Mezzari et al. 
2004). Metal tolerance was detected in a cal
lus  culture  established  from  Acer  rubrum 
seedlings  growing  in  soil  contaminated  by 
zinc,  cadmium,  nickel  and arsenic.  A posi
tive  linear  correlation  was  found  between 
zinc resistance of callus and total Zn in soil 
beneath sampled trees,  while  no significant 
correlations  were  evidenced  with  the  other 
metals (Watmough & Hutchinson 1998). In 
Acer pseudoplatanus callus culture, Cu-, Zn- 
and  Cd-resistance  traits  were  identified  in 
cell lines originating from trees at a site con
taminated  by  these  metals  (Watmough  & 
Dickinson  1995).  In  vitro screenings  were 
also used to  investigate  how several  heavy 
metals  affect  pollen  germination  and  tube 
elongation  in  Pinus  resinosa (Chaney  & 
Strickland 1984) and to test the tolerance for 
Zn and Cu in mycorrhyzal isolates collected 
in an abandoned Cu mines, in view of their 
inoculation  into  Pinus  sylvestris seedlings 
(Adriaensen et  al.  2005).  Combined micro
propagation  and  hydroponic  culture  were 
used to study tolerance to copper and zinc in 
Betula pendula,  finding that a seed-derived 
clone  from a  Pb/Zn-contaminated  site  sho
wed more tolerance to Cu and Zn than bud-
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derived  clones  from  a  Cu/Ni-contaminated 
site  or  from an uncontaminated  area (Utri
ainen et al. 1997). 

Role of endophytic bacteria and 
mychorrhizas in phytoremediation

Bacteria living within plant tissues without 
causing  disease  are  referred  to  as  endo
phytes. Some of these have shown the capa
city to enhance plant growth and resistance 
to  biotic  and  abiotic  stresses  by  various 
mechanisms (e.g., nitrogen fixation, produc
tion  of  phytohormones,  solubilisation  of 
minerals,  etc.),  therefore,  recently attention 
has been focusing on the role of endophytic 
bacteria in phytoremediation (Selosse et  al. 
2004,  Newman  &  Reynolds  2005).  Endo
phytes  have  been  inoculated  and  studied, 
e.g., in hybrid spruce (Chanway et al. 2000), 
lodgepole  pine  (Chanway  &  Holl  1994a), 
Douglas-fir (Chanway & Holl 1994b), pop
lar and willow. Based on their potential for 
remediation, three Pseudomonas strains were 
identified and tested in a clone of hybrid cot
tonwood  (Populus  trichocarpa x  P.  deltoi
des) (Germaine et al. 2004). A large part of 
the research on this  subject  has  been dealt 
with the activity of endophytes on hydrocar
bons. For instance,  in hybrid cottonwood a 
strain  of  the  endophyte  Rhizobium  tropici 
was found active in the degradation of ex
plosives  (Doty  et  al.  2005),  as  well  as  a 
Methylobacterium strain  isolated  from  hy
brid poplar (Populus deltoides x  P. nigra - 
Van Aken et al. 2004a, 2004b); poplar endo
phytic bacteria have been engineered for en
hancing  thrichloroethylene  degradation 
(Shim et al.  2000) and  Taghavi et al.  2005 
observed a horizontal gene transfer of a plas
mid conferring toluene degradation. 

Concerning  specifically  heavy  metals,  it 
has been observed that heavy metal resistant 
endophytes are present in various hyperaccu
mulator plants growing on heavy-metal con
taminated  soil  (Rajkumar  et  al.  2009). 
Among herbaceous plants,  e.g., shoot endo
phytes  of  Thlaspi  goesingense were  found 
more  tolerant  to  high  nickel  concentration 
than the correspondent rhizospheric bacteria 
(Idris  et  al.  2004),  endophytic  bacteria  of 
Nicotiana  tabacum could  reduce  cadmium 
phytotoxicity (Mastretta et al. 2009), recom
binant heavy-metal resistant endophytic bac
teria  were  studied  in  Lolium  perenne and 
Lupinus  luteus (Lodewyckx  et  al.  2001). 
Among woody species, some isolates of hy
brid  cottonwoods  have  demonstrated  to
lerance to heavy metals (Moore et al. 2006); 
bacteria associated with Zn/Cd-accumulating 
Salix  caprea have  been  studied  regarding 
their potential to support heavy metal phyto
extraction (Kuffner et al. 2010). 

Arbuscular  mychorrhizas  are  also  well 
known to be involved in the metal  uptake; 
their  presence in the soil  may significantly 
affect  the  plant  response  to  metal  stress 

(Pawloska & Charvat 2004). A vast amount 
of literature is available on the effects of my
corrhizal  colonisation  of  plants  living  in 
heavy  metal-polluted  soils  (Göhre  &  Pas
zkowski 2006), on the protective role of my
corrhizas  against  heavy-metal  induced  oxi
dative stress (Schützendübel & Polle 2002), 
and  on  their  possible  role  in  remediation 
(Khan et al. 2000, Audet & Charest 2007b). 
In the hyperaccumulating fern Pteris vittata, 
for  instance,  they  have  been  found  to  in
crease  arsenic  uptake  (Trotta  et  al.  2006). 
Adriaensen  et  al.  (2006) found  that  Pinus 
sylvestris seedlings colonized by a Zn-tole
rant  isolate  of  Suillus  bovinus grew  much 
better and remained physiologically healthier 
when exposed to elevated Zn concentration 
than seedlings not inoculated or colonized by 
a Zn-sensitive isolate. The response to high 
copper  (Todeschini  et  al.  2007)  and  zinc 
(Lingua et al.  2008) concentration was stu
died on poplar clones inoculated with arbus
cular  mycorrhizal  fungi,  while  in  mycor
rhyzed  Betula spp. tolerance to zinc (Denny 
& Wilkins 1987) and Cu and Pb accumula
tion  (Bojarczuk  &  Kieliszewska-Rokicka 
2010) were studied. By X-ray microanalysis 
of heavy metals, it was found that, in mycor
rhized  Picea  abies seedlings, extracellular 
complexation of Cd occurred predominantly 
in the Hartig net hyphae and both extracellu
lar complexation and cytosolic sequestration 
of Zn occurred in the fungal tissue (Frey et 
al. 2000). The potential benefits of ectomy
corrhizal fungi in protecting their host plants 
from metal  contamination  were  also inves
tigated by Blaudez et al. (2000) after testing 
thirty-nine ectomycorrhizal isolates for their 
tolerance  to  cadmium,  copper,  nickel  and 
zinc.  The  potential  of  Salix  viminalis and 
Populus x  generosa for the phytoextraction 
of heavy metals, inoculated or not with the 
fungus  Glomus  intraradices,  was  recently 
assessed (Bissonnette et al.  2010), while in 
Eucalyptus  globulus grown  in  Zn-contami
nated soil, the improving potential of interac
tions  between  saprophytic  and  arbuscular 
micorrhizal  fungi  was  investigated  (Ar
riagada et al. 2010). 

Molecular biology and genetic 
engineering for phytoremediation

Molecular biology and genetic engineering 
are  being increasingly considered  as  effec
tive  tools  for  better  understanding and  im
proving  the  phytoremediation  capability  of 
plants, whose biological functions can now 
be  analyzed  in  detail  and  partly  modified. 
The  metal  resistance  systems  are  better 
known in microorganisms (Silver 1996, Hall 
2002, Silver & Phung 2005); in plants only a 
few  systems  of  metal  tolerance  and/or  se
questration  are  sufficiently  characterized 
(Kärenlampi  et  al.  2000).  In  recent  years, 
several key steps have been identified at the 
molecular  level,  allowing an increasing ap

plication  of  molecular-genetic  technologies 
and a transgenic approach to a better under
standing  of  mechanisms  involved  in  heavy 
metal  tolerance and accumulation  in  plants 
(Clemens et al.  2002,  Yang et al.  2005). It 
has  been  demonstrated  in  classic  genetic 
studies that only a few genes are responsible 
for  metal  tolerance  (Macnair  et  al.  2000). 
Transfer and/or overexpression of genes re
sponsible for metal uptake, translocation and 
sequestration may allow for  the production 
of plants which,  depending on the strategy, 
can  be  successfully  exploited  in  phytore
mediation (Krämer & Chardonnens 2001, Pi
lon-Smits  &  Pilon  2002,  Clemens  et  al. 
2002,  Rugh 2004,  Eapen & D’Souza 2005, 
Cherian & Oliveira 2005, Doty 2008). In this 
case, special attention must be paid to pro
blems related to the introduction of geneti
cally modified trees, particularly concerning 
their legal and social acceptance (Knowles & 
Adair 2007). Promotion of growth and bio
mass production is a correlated task accom
plished, for instance, by increased gibberel
lin biosynthesis (Eriksson et al. 2000). 

The improvement of the phytoremediation 
properties of plants can be achieved by the 
modification of their primary and secondary 
metabolism  and  the  introduction  of  new 
phenotypic  and  genotypic  characters  (Da
vison 2005).  Even if  most of the genes in
volved  in  metal  uptake,  transport  and  se
questration  have  been  studied  on  the  her
baceous model plant Arabidopsis, it must be 
considered that this species,  as  well  as the 
most common species defined as hyperaccu
mulators,  have  a  limited  phytoremediation 
capacity  due  to  their  small  size  or  slow 
growth  rate.  On  the  contrary,  large,  fast-
growing plants, like some woody plants, are 
an important tool for this purpose; on pop
lars, for instance, reasonable transformation 
frequencies have been achieved (Han et al. 
2000). 

Studies  on  Arabidopsis and  other  species 
(hyperaccumulators), however, open the way 
to a transfer and application to high-biomass 
plants. Among these,  Populus species (pop
lars, cottonwoods, aspens) and hybrids have 
become a model  system in forest  tree  bio
technology (Bradshaw et  al.  2000),  due  to 
several useful features: short rotation cycle, 
rapid  growth  rate  and  ease  of  vegetative 
propagation and in vitro multiplication (Con
falonieri  et al.  2003). Moreover,  the poplar 
genome has been entirely sequenced (Tuskan 
et al. 2006). It is always important, however, 
to take into account the risks associated with 
the  biotechnological  applications  and  care
fully  evaluate  the  field  performances  of 
transgenic plants (Confalonieri et al. 2003). 

Hairy  roots  induction  by  Agrobacterium 
rhizogenes is probably the easiest method for 
enhancing  the  root  biomass  and,  con
sequently, improving metal uptake. This has 
been  demonstrated  for  some hyperaccumu
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lator plants (Maitani et al. 1996, Nedelkoska 
& Doran 2000,  Eapen et al. 2003,  Eapen & 
D’Souza 2005). 

Transgenic white poplar has been recently 
obtained expressing the  PsMTa1 gene from 
Pisum  sativum for  a  metallothionein-like 
protein.  Transformed  plants  showed  en
hanced resistance to heavy metal, surviving 
high concentrations of CuCl2 in in vitro cul
ture,  which  strongly  affected  the  nontrans
genic  plants.  Rooting  capacity  of  mi
croshoots was maintained in transgenic lines 
exposed  to  0.1  mM  CuCl2,  while  it  was 
totally destroyed in nontransgenic shoots. In 
the  presence  of  1  mM  ZnSO4,  nontrans
formed shoots rooted abundantly, while dif
ferent rooting rates were observed in trans
genic lines (Balestrazzi et al. 2009). 

Genes  encoding  enzymes  changing  the 
oxidation state of heavy metals can be intro
duced into plants (Rugh et al. 1996, Hansen 
et al. 1998). For instance, compared to wild 
type,  transgenic  Populus  deltoides overex
pressed  mer-A9 and  mer-A18 genes,  when 
grown in soil with high mercury concentra
tion, developing higher biomass and higher 
amount of Hg(0), which evaporates through 
the cell surface (Che et al. 2003). Increased 
tolerance to ionic mercury was first obtained 
in  yellow  poplar  (Lyriodendron  tulipifera) 
transformed  with  mer-A gene  (Rugh  et  al. 
1998). For the remediation of Hg,  Populus  
deltoides has been engineered with the bac
terial  mer-A (mercuric  ion  reductase)  and 
mer-B (organomercurial  lyase  -  Che  et  al. 
2003);  transgenic  trees  expressing  both 
genes  showed  tolerance  up  to  10  μM  of 
phenylmercuric acetate (PMA -  Lyyra et al. 
2007).  Significant  results  on  tolerance  to 
mercury  and  related  remediation  capacity 
were obtained also in  Oryza sativa (Heaton 
et  al.  2003)  and  in  Spartina  alterniflora 
(Czako  et  al.  2006).  In  Salix spp.  it  was 
proved  that  the majority  of  the mercury is 
accumulated and retained in the cell wall of 
the roots and only a very small part is trans
ferred to the shoots (Wang & Greger 2004). 

Genetic engineering for arsenate reduction, 
increased  translocation  from root  to  shoot, 
and  volatilisation  has  been  recently  illus
trated  and discussed (Zhu  & Rosen  2009). 
Arabidopsis has been transformed in order to 
better control the mobility and sequestration 
of arsenic (Dhankher et al. 2002). In  Pteris  
vittata, genes have been identified  that  en
code enzymes  with  arsenate  reductive  acti
vity (Dhankher et al. 2002, Ellis et al. 2006, 
Rathinasabapathi et al. 2006). 

For selenium, a strategy to protect protein 
synthesis from the activity of this metal was 
applied  in  transformed  Arabidopsis by  the 
expression  of  a  mammalian  selenocysteine 
lyase (Pilon et al.  2003) and could be now 
tested on woody species. 

Transgenic  poplar,  with  increased  gluta
thione peroxidase activity, showed increased 

tolerance  to  zinc,  probably  due  to  an  en
hanced ability to detoxify the active oxygen 
species  generated  by  the  pollutant  (Bitt
sanszky  et  al.  2005).  Alterations  in  photo
synthetic parameters and reduction in growth 
have been reported for a Populus x eurame
ricana clone after treatment with high con
centrations of zinc (Di Baccio et al. 2003). 

Cadmium in the environment derives from 
industrial processes, urban pollution (heating 
systems and traffic),  fertilizers  and minera
lization  of  rocks  (Rauser  & Muwly  1995). 
Sensitivity to and accumulation of cadmium 
in some woody species  have been recently 
studied in Sweden (Österås et al. 2000). In a 
relatively  new strategy,  aimed  to  compart
mentalize  the metals,  tolerance to lead and 
cadmium was  enhanced  in  Arabidopsis by 
the  overexpression  of  the  yeast  vacuolar 
transporter protein YCF1 (Song et al. 2003), 
demonstrating  the  possibility  to  engineer 
phytoremediators for increasing their ability 
to  sequester  heavy metals.  Poplars  overex
pressing  a  bacterial  glutamylcysteine  syn
thetase in the cytosol  reached a 30-fold in
crease in its foliar activity compared to un
transformed  controls;  this  allowed  greater 
tissue cadmium accumulation but had only a 
marginal effect on cadmium tolerance (Arisi 
et al. 2001). 

Plant roots are able to release into the rizo
sphere chelating agents with binding ability 
for  metals  (Kinnersely  1993).  These  metal 
chelators  or  other  molecules  within  plant 
cells that have a high affinity for metals can 
help  in  the  metal  sequestering (Grill  et  al. 
1985,  Mehra & Tripathi 1999,  Schat  et  al. 
2002,  Shah & Nongkynrih 2007,  Fulekar et 
al. 2009). Plants may also be engineered to 
enhance  the  synthesis  of  metal  chelators 
(Kärenlampi  et  al.  2000,  Clemens  et  al. 
2002). Metal chelators include phytochelat
ins,  metallothioneins,  organic  acids  and 
amino  acids.  In  vitro experiments  have 
shown that cadmium in the form of phyto
chelatin complex is much better tolerated by 
plant enzyme than its free radical ion (Kneer 
&  Zenk  1992).  In  Nicotiana  glauca trans
formed with a gene encoding a phytochelatin 
synthase,  more  metals  were  accumulated 
when  grown  in  mine  soils  compared  with 
non-transformed  plants  (Martinez  et  al. 
2006). Attempts have been made to increase 
the formation  of  phytochelatins  by overex
pressing  genes  encoding  enzymes  stimula
ting the synthesis of cysteine and glutathione 
(Harada et al. 2001). Metallothioneins, a ca
tegory of remarkable interest, are defined as 
low  molecular  mass  cysteine-rich  proteins 
that can bind heavy metals and may play a 
role in their intracellular sequestration. In the 
hybrid  poplar  genome,  they  form a  multi
gene  family  and  it  has  been  hypothesised 
that they participate in the process of metal 
homeostasis  and possibly in the process  of 
tolerance (Kohler et al. 2004). Advances in 

understanding the regulation of phytochela
tins  biosynthesis  and metallothioneins gene 
expression and their possible roles in heavy 
metal  detoxification  and  homeostasis  have 
been  recently reviewed  (Cobbett  & Golds
brough 2002). 

Conclusions
Phytoremediation of metal-polluted soil by 

plant  phytoextraction  is  a  technique attrac
ting  the  interest  of  an  increasing  scientific 
community and the use of woody species, in 
particular,  presents  some  aspects  of  rele
vance.  Biotechnologies  are  surely powerful 
tools allowing to investigate and evaluate the 
potential of phytoremediation. As described 
in this paper, many fields of study are con
tributing  to  a  rapid  increase  of  our  know
ledge  on  the  mechanisms  involved.  How
ever, despite of the intensive research carried 
out in the last years on this topic, very few 
field trials demonstrated the technical feasi
bility  and economic  workability  of  the  de
scribed approaches (Van Nevel et al. 2007). 
Indeed, most of the literature rarely provides 
information  on  the  practical  application  of 
phytoremediation techniques. 

Specialisation  and  fragmentation  of  re
search is probably real, but it should not be 
seen as a limit: every progress can contribute 
and converge to increase the possibility of an 
advantageous  exploitation  of  woody  plants 
for phytoremediation. 
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