Supplementary Material

Fig. S1 - The effect of hydrostatic pressure on specific hydraulic conductivity (K_s) of *Pinus halepensis* branches. *Error bars* represent the standard error of the mean ($n = 9$). The hydrostatic pressure was increased by raising the water reservoir height stepwise from 15 to 70 cm every 40 min. K_s increased from practically zero to 0.4 kg m$^{-1}$ MPa$^{-1}$ s$^{-1}$ at pressure larger than 0.003 MPa. K_s measurements reported in Figs. 3-5 were performed at pressure of 0.007-0.020 MPa.
Fig. S2 - Xylem vulnerability curve for *Pinus halepensis* branches: percent loss of hydraulic conductivity (PLC) as function of branch water potential (WP). Measurements were performed in the bench drying method (Sperry & Tyree 1988) on branches sampled in December 2013 in Beit Dagan, 80 km from Yatir forest. The curve was adjusted with a sigmoid function using the equation:

\[PLC = \frac{100}{1 + \exp\left(\frac{S}{25} \times (P - P_{50})\right)} \]

where \(P_{50} \) (-3.95 MPa) is the xylem WP inducing 50% loss of conductivity and \(S \) is the slope of the curve at the inflexion point (Pammenter & van der Willigen 1998). *Error bars* represent the standard error of the mean (\(n = 6 \)).