Appendix 1 - Diversity indices and the corresponding equations.

<table>
<thead>
<tr>
<th>Index</th>
<th>Source</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brillouin diversity (HB)</td>
<td>Magurran (2004)</td>
<td>(HB = \frac{\ln N! - \sum \ln n_i!}{N})</td>
</tr>
<tr>
<td>Brillouin evenness (E)</td>
<td>Magurran (2004)</td>
<td>(E = \frac{HB}{HB_{\text{max}}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(HB_{\text{max}} = \frac{1}{N} \ln \left(\frac{N!}{[N/S]^{\frac{S}{N}} \cdot ([N/S]+1)^\frac{S}{N}} \right))</td>
</tr>
<tr>
<td>Tree Height Diversity (THD)</td>
<td>Kuuluvainen et al. (1996)</td>
<td>(H' = -\sum_{i=1}^{S} (p_i \ln p_i))</td>
</tr>
<tr>
<td>Tree Diameter Diversity (TDD)</td>
<td>Rouvinen & Kuuluvainen (2005)</td>
<td>(H' = -\sum_{i=1}^{S} (p_i \ln p_i))</td>
</tr>
<tr>
<td>Vertical evenness (VE)</td>
<td>Neumann & Starlinger (2001)</td>
<td>(VE = \sum_{i=1}^{S} (-\ln \pi_i) \cdot \frac{\pi_i}{\ln 4})</td>
</tr>
<tr>
<td>Ripley’s (K(t))</td>
<td>Haase (1995)</td>
<td>(K(t) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} I_i(\delta_{ij}) \cdot w_{ij}, \text{ for } i \neq j)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(L(t) = \sqrt{\frac{K(t)}{\pi}} - t)</td>
</tr>
<tr>
<td>Ripley’s (K_{12}(t))</td>
<td>Haase (1995, 2001)</td>
<td>(K_{12}(t) = \frac{n_1 n_2}{n_1 + n_2} \cdot \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} w_{ij} \cdot I_i(\delta_{ij}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(L_{12}(t) = \sqrt{\frac{K_{12}(t)}{\pi}} - t)</td>
</tr>
<tr>
<td>O-ring (r)</td>
<td>Wiegand & Moloney (2004)</td>
<td>(O_{12}(r) = \lambda_2 g_{12}(r))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(g_{12}(r) = \frac{dK_{12}(r)}{dr} \cdot (2\pi r)^{-1})</td>
</tr>
</tbody>
</table>

Legend: \(n_i \): number of individuals in the \(i \)th species; \(N \): total number of individuals; \(S \): number of species in the sample; \([N/S] \): the integer of \(N/S \); \(r \): \(N - S [N/S] \); \(p_i \): proportion of stems in the \(i \)th layer, based respectively on tree height for THD and tree diameter for TDD; \(\pi_i \): relative crown area of all trees in the \(i \)th height layer; \(t \): distance lag; \(A \): plot area with \(n \) trees; \(\text{counter variable set to 1 if the distance } \delta_{ij} \text{ between tree } i \text{ and tree } j \text{ is less or equal to } t \); \(w_{ij} \): weighting factor to correct for the edge effects; \(n_1 \) and \(n_2 \): number of events in the two classes.