iForest - Biogeosciences and Forestry


A new zoning index for detecting areas of biological importance applied to a temperate forest in Central Mexico

Alin Nadyely Torres-Díaz, Manuel de Jesús González-Guillén   , Héctor Manuel De Los Santos Posadas, Patricia Hernández De La Rosa, Aurelio León Merino

iForest - Biogeosciences and Forestry, Volume 16, Issue 4, Pages 253-261 (2023)
doi: https://doi.org/10.3832/ifor4111-016
Published: Aug 31, 2023 - Copyright © 2023 SISEF

Research Articles

Biodiversity conservation is a priority because it is the cornerstone of ecosystem services and natural cycles, providing essential resources for the development of humans and other species. Several indices have been proposed to prioritize areas needing protection. However, some require specific information while others are based on subjective categorical variables, are limited to a particular plant community or cannot be represented at a spatial scale. We developed an Index of Importance for Biological Conservation (InICoB), which was applied to a temperate forest in central Mexico but can be used for any plant community by adjusting some of its parameters. The proposed index is objective, based on quantitative indicators of vegetation composition and structure, and can be spatially projected. InICoB was tested and validated on a temperate cloud forest (CF) and its associated communities: advanced secondary vegetation (ASV) / coffee plantations (CP), agriculture, and induced grasslands. Life forms, presence of endemic, climax, native and protected species, diversity, structural complexity, and complementarity were used as indicators in its construction. InICoB was calculated for 63 sampling units (SUs), and a geostatistical model was incorporated for its interpolation with environmental and social variables as predictors. The results show that InICoB adequately evaluated the different environmental units that cover the locality. Significant differences were observed between the forest and the secondary/induced vegetation. The highest value of InICoB (0.91) was found in the CF, and the lowest in induced vegetation (0.3). The geostatistical model showed that occupation of the land, distance to town, and slope have an important influence on InICoB. The advantages of InICoB include the use of quantitative indicators that can be applied to any plant community. Additionally, it is flexible with respect to the data collected, it can be calculated only with the presence/absence of species or it can include forest measurement data. Furthermore, it is easy to interpret and can be spatially represented in a raster layer that can be added to a geographic information system. Therefore, it can be a very helpful tool in decision-making for land use planning and evaluation of the effects of human activities on plant communities.


Biodiversity Conservation, Composition and Structure, Plant Communities, Flora Indicators, Flora Diversity, Cloud Forest, Geostatistical Model

Corresponding author

Manuel de Jesús González-Guillén


Torres-Díaz AN, González-Guillén MJ, De Los Santos Posadas HM, Hernández De La Rosa P, León Merino A (2023). A new zoning index for detecting areas of biological importance applied to a temperate forest in Central Mexico. iForest 16: 253-261. - doi: 10.3832/ifor4111-016

Academic Editor

Marco Borghetti

Paper history

Received: Apr 08, 2022
Accepted: Jul 04, 2023

First online: Aug 31, 2023
Publication Date: Aug 31, 2023
Publication Time: 1.93 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 404
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 0
Abstract Page Views: 0
PDF Downloads: 332
Citation/Reference Downloads: 0
XML Downloads: 72

Web Metrics
Days since publication: 271
Overall contacts: 404
Avg. contacts per week: 10.44

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Barreto L, Ribeiro M, Veldkamp A, Van Eupen M, Kok K, Pontes E (2010)
Exploring effective conservation networks based on multi-scale planning unit analysis. A case study of the Balsas sub-basin, Maranhão State, Brazil. Ecological Indicators 10 (5): 1055-1063.
CrossRef | Gscholar
Bordenave BG, De Granville JJ, Steyn K (2011)
Quantitative botanical diversity descriptors to set conservation priorities in Bakhuis Mountains rainforest, Suriname. Botanical Journal of the Linnean Society 167 (1): 94-130.
CrossRef | Gscholar
Carvajal-Hernández CI, Krömer T, Vázquez-Torres M (2014)
Riqueza y composición florística de pteridobiontes en bosque mesófilo de montaña y ambientes asociados en el centro de Veracruz, México [Richness and floristic composition of pteridobionts in cloud forests and its associated environments in central Veracruz, Mexico]. Revista Mexicana de Biodiversidad 85 (2): 491-501. [in Spanish]
CrossRef | Gscholar
Cielo-Filho R, Gneri MA, Martins FR (2007)
Position on slope, disturbance, and tree species coexistence in a seasonal semideciduous forest in SE Brazil. Plant Ecology 190 (2): 189-203.
CrossRef | Gscholar
CITES (2019)
Appendices I, II and III. Convention on international trade in endangered species of wild fauna and flora. UN Environmental Program - UNEP, Nairobi, Kenya, pp. 81.
Online | Gscholar
Colwell RK, Coddington JA (1994)
Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences 345 (1311): 101-118.
CrossRef | Gscholar
Cowie RH, Bouchet P, Fontaine B (2002)
The sixth mass extinction: fact, fiction or speculation? Biological Reviews 97: 640-663.
CrossRef | Gscholar
Dale VH, Beyeler SC (2001)
Challenges in the development and use of ecological indicators. Ecological Indicators 1 (1): 3-10.
CrossRef | Gscholar
Dale VH, Beyeler SC, Jackson B (2002)
Understory vegetation indicators of anthropogenic disturbance in longleaf pine forests at Fort Benning, Georgia, USA. Ecological Indicators 1 (3): 155-170.
CrossRef | Gscholar
Dale VH, Peacock AD, Garten Jr CT, Sobek E, Wolfe AK (2008)
Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests. Ecological Indicators 8 (6): 818-827.
CrossRef | Gscholar
Denslow JS (2000)
Patterns of structure and diversity across a tropical moist forest chronosequence. In: Proceedings of the “IAVS Symposium”. Opulus Press, Sweden, pp. 237-241.
Espejo-Serna A (2014)
Las plantas vasculares del bosque mesófilo de México [Vascular plants of the cloud forest of Mexico]. In: “Los Bosques Mesófilos de Montaña de México, Diversidad, Ecología y Manejo” (Gual-Díaz M, Rendón-Correa A eds.). CONABIO, México, pp. 189-195. [in Spanish]
Evangelista-Oliva V, López-Blanco J, Caballero-Nieto J, Martínez-Alfaro MA (2010)
Patrones espaciales de cambio de cobertura y uso del suelo en el área cafetalera de la Sierra Norte de Puebla [Spatial patterns of land cover change and land use in the coffee zone in the Sierra Norte of Puebla]. Investigaciones Geográficas 72: 23-38. [in Spanish]
Online | Gscholar
Ezquerro M, Pardos M, Diaz-Balteiro L (2019)
Integrating variable retention systems into strategic forest management to deal with conservation biodiversity objectives. Forest Ecology and Management 433: 585-593.
CrossRef | Gscholar
Gallardo-Cruz JA (2004)
Efecto de la orientación y la altitud sobre la heterogeneidad vegetacional en el Cerro Verde, Nizanda (Oaxaca), México [Effect on vegetation heterogeneity of the orientation and altitude in Cerro Verde, Nizanda (Oaxaca), Mexico]. BSc thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, México. pp. 79. [in Spanish]
Geburek T, Milasowszky N, Frank G, Konrad H, Schadauer K (2010)
The Austrian forest biodiversity index: all in one. Ecological Indicators 10 (3): 753-761.
CrossRef | Gscholar
Gordon A, Simondson D, White M, Moilanen A, Bekessy SA (2009)
Integrating conservation planning and land use planning in urban landscapes. Landscape and Urban Planning 91 (4): 183-194.
CrossRef | Gscholar
Gual-Díaz M, González-Medrano F (2014)
Los bosques mesófilos de montaña en México [Mountain cloud forests in Mexico]. In: “Los Bosques Mesófilos de Montaña de México, Diversidad, Ecología y Manejo” (Gual-Díaz M, Rendón-Correa A eds.). CONABIO, México, pp. 27-68. [in Spanish]
Holdridge LR, Grenke W, Hatheway WH, Liang T, Tosi JA (1971)
Forest environments in tropical life zones: a pilot study. Pergamon Press, UK, pp 747.
INEGI (2000)
Síntesis geográfica del estado de Puebla, México [Geographical synthesis of the state of Puebla, Mexico]. Instituto Nacional de Estadística, Geografía e Informática - INEGI, México, pp. 121. [in Spanish]
INEGI (2010)
Sistema para la consulta de información censal 2010 [Consultation of census information system 2010]. Instituto Nacional de Estadística y Geografía - INEGI, Mexico, web site. [in Spanish]
Online | Gscholar
INEGI (2013)
Continuo de elevaciones mexicano [Mexican continuum of elevations]. Instituto Nacional de Estadística y Geografía - INEGI, Mexico, web site. [in Spanish]
Online | Gscholar
IUCN (2019)
The IUCN red list of threatened species. International Union for Conservation of Nature, Cambridge, UK.
Online | Gscholar
Krasilnikov P (2020)
Montane cloud forests. In: “Encyclopedia of the World’s Biomes” (Goldstein MI, DellaSala DA eds). Elsevier, USA, Vol. 3, pp. 138-145.
Kruskal WH, Wallis WA (1952)
Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47 (260): 583-621.
CrossRef | Gscholar
Landres PB (1992)
Ecological indicators: panacea or liability? In: “Ecological Indicators” (McKenzie DH, Hyatt DE, McDonald VI eds). Elsevier Applied Scientific Publishers, Amsterdam, Netherlands, vol. 2, pp. 1295-1318.
CrossRef | Gscholar
Lot A, Chiang F (1986)
Manual de herbario: administración y manejo de colecciones, técnicas de recolección y preparación de ejemplares botánicos [Herbarium manual: administration and management of collections, collection techniques and preparation of botanical specimens]. Consejo Nacional de la Flora de México, México, pp. 142 [in Spanish]
Luis-Martínez JC, Luna-Cavazos M, Vibrans H, Flores-Cruz M (2020)
Atributos ecológicos y de hábitat de las especies suculentas del área natural protegida monumento natural Yagul, Oaxaca, México [Ecological and habitat attributes of succulent species in the natural monument of Yagul, natural protected area, Oaxaca, Mexico]. Botanical Sciences 98 (1): 36-49. [in Spanish]
CrossRef | Gscholar
Malik ZH, Hussain F, Malik NZ (2007)
Life form and leaf size spectra of plant communities Harbouring Ganga Chotti and Bedori Hills during 1999-2000. International Journal of Agriculture and Biology 9 (6): 833-838.
Online | Gscholar
Martínez-Cruz J, Ibarra-Manríquez G (2012)
Areas prioritarias de conservación para la flora leñosa del estado de Colima, México [Priority conservation areas for the woody flora in Colima state, Mexico]. Acta Botánica Mexicana (99): 31-53. [in Spanish]
CrossRef | Gscholar
Martínez MA, Evangelista V, Basurto F, Mendoza M, Cruz-Rivas A (2007)
Flora útil de los cafetales en la Sierra Norte de Puebla, México [Useful flora of coffee plantations in the Sierra Norte de Puebla, Mexico]. Revista Mexicana de Biodiversidad 78 (1): 15-40. [in Spanish]
Marín AI, Malak DA, Bastrup-Birk A, Chirici G, Barbati A, Kleeschulte S (2021)
Mapping forest condition in Europe: methodological developments in support to forest biodiversity assessments. Ecological Indicators 128: 107839.
CrossRef | Gscholar
Mora F (2019)
The use of ecological integrity indicators within the natural capital index framework: the ecological and economic value of the remnant natural capital of México. Journal for Nature Conservation 47: 77-92.
CrossRef | Gscholar
Muñiz-Castro MA, Williams-Linera G, Martínez-Ramos M (2012)
Dispersal mode, shade tolerance, and phytogeographical affinity of tree species during secondary succession in tropical montane cloud forest. Plant Ecology 213 (2): 339-353.
CrossRef | Gscholar
Noss RF (1990)
Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4 (4): 355-364.
CrossRef | Gscholar
Opdam P, Verboom J, Pouwels R (2003)
Landscape cohesion: an index for the conservation potential of landscapes for biodiversity. Landscape Ecology 18 (2): 113-126.
CrossRef | Gscholar
Peña-Claros M (2003)
Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica 35 (4): 450-461.
CrossRef | Gscholar
R Core Team (2019)
The R project for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria.
Online | Gscholar
Raju VS, Krishna PG, Suthari S (2014)
Environmental assessment of climate of a habitat through floristic life-form spectra, a case study of Warangal north forest division, Telangana, India. Journal of Natural Sciences 2 (1): 77-93.
Ramírez-Prieto J, Koch-Olt S, Balleza-Cadengo J, Adame-González M, Romero-Nápoles J (2016)
Flora de la cima de la Mesa Alta, Jerez, Zacatecas, México [Flora from the top of the Mesa Alta, Jerez, Zacatecas, Mexico]. Botanical Sciences 94 (2): 357-375. [in Spanish]
CrossRef | Gscholar
Rial A (2006)
Un índice de evaluación de la vegetación con fines de conservación en áreas privadas de los Llanos del Orinoco, Venezuela [A vegetation evaluation index for conservation purposes in private areas of the Llanos del Orinoco, Venezuela]. Interciencia 31 (2): 130-135. [in Spanish]
Ricardo-Nápoles NE (2016)
Indicadores ecológicos que evalúan el estado de antropización-conservación de las formaciones vegetales, ecosistemas, paisajes y territorios [Ecological indicators that assess the anthropization-conservation state of plant formations, ecosystems, landscapes and territories]. Acta Botanica Cubana 215 (3): 328-335. [in Spanish]
Rodrigues AS, Gaston KJ (2002)
Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation 105 (1): 103-111.
CrossRef | Gscholar
Romero A, Luna M, García E (2014)
Factores físicos que influyen en las relaciones florísticas de los piñonares (Pinaceae) de San Luis Potosí, México [Physical factors that influence on the floristic relationships of pine nuts (Pinaceae) in San Luis Potosí, Mexico]. Revista de Biología Tropical 62 (2): 795-808. [in Spanish]
CrossRef | Gscholar
Rzedowski J (1991)
Diversidad y orígenes de la flora fanerogámica de México [Diversity and origins of the phanerogamic flora of Mexico]. Acta Botánica Mexicana (14): 3-21. [in Spanish]
CrossRef | Gscholar
Rzedowski J (1996)
Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México [Preliminary analysis of the vascular flora of Mexican cloud forests]. Acta Botanica Mexicana (35): 25-44. [in Spanish]
CrossRef | Gscholar
Rzedowski J (2006)
Vegetación de México [Vegetation of Mexico]. CONABIO, México, pp. 1. [in Spanish].
Online | Gscholar
Rüdisser J, Tasser E, Tappeiner U (2012)
Distance to nature a new biodiversity relevant environmental indicator set at the landscape level. Ecological Indicators 15 (1): 208-216.
CrossRef | Gscholar
Secretariat of the Convention on Biological Diversity (2010)
Global Biodiversity Outlook 3. Progress Press, Canada, pp. 94
Online | Gscholar
NOM-059-SEMARNAT-2010, Protección ambiental - Especies nativas de México de flora y fauna silvestres - Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio [Environmental protection-Native species of wild flora and fauna of Mexico - Risk categories and specifications for their inclusion, exclusion or change]. Diario Oficial de la Federación, Mexico, web site. [in Spanish].
Online | Gscholar
Simpson EH (1949)
Measurement of diversity. Nature 163: 688-688.
CrossRef | Gscholar
SMN (2019)
Información estadística climatológica [Climatological statistical information]. Comisión Nacional de Agua, Servicio Meterológico Nacional, México, web site. [in Spanish] URL:
Online | Gscholar
Song Q, Wang B, Wang J, Niu X (2016)
Endangered and endemic species increase forest conservation values of species diversity based on the Shannon-Wiener index. iForest - Biogeosciences and Forestry 9 (3): 469-474.
CrossRef | Gscholar
Tropicos.org (2020)
The Tropicos. Missouri Botanical Garden, St. Louis, MO, USA, web site.
Online | Gscholar
UN (2010)
Global biodiversity outlook 3. United Nations, Geneva, Switzerland, pp. 68.
Online | Gscholar
Vane-Wright RI, Humphries CJ, Williams PH (1991)
What to protect? Systematics and the agony of choice. Biological Conservation 55 (3): 235-254.
CrossRef | Gscholar
Villaseñor JL (2010)
El bosque húmedo de montaña en México y sus plantas vasculares [The moist montane forest in Mexico and its vascular plants]. CONABIO - UNAM, México, pp. 38. [in Spanish]
Wang G, Zhou G, Yang L, Li Z (2002)
Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology 165 (2): 169-181.
CrossRef | Gscholar
Williams-Linera G, Manson RH, Vera EI (2002)
La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México [Mountain cloud forest fragmentation and land use patterns in the western region of Xalapa, Veracruz, Mexico]. Madera y Bosques 8 (1): 73-89. [in Spanish]
CrossRef | Gscholar
Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003)
Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84 (8): 2042-2050.
CrossRef | Gscholar
Zeileis A, Cribari-Neto F, Gruen B, Kosmidis I, Simas AB, Rocha AV (2020)
Package “betareg”: beta regression. R package user manual, pp. 32.
Online | Gscholar
Zhao CM, Chen WL, Tian ZQ, Xie ZQ (2005)
Altitudinal pattern of plant species diversity in Shennongjia Mountains, Central China. Journal of Integrative Plant Biology 47 (12): 1431-1449.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info