iForest - Biogeosciences and Forestry


Tectona grandis Linn. f. secondary metabolites and their bioactive potential: a review

Lucero Paola Chávez-Salgado   , Virginie Vandenbossche, Gerard Vilarem

iForest - Biogeosciences and Forestry, Volume 15, Issue 2, Pages 112-120 (2022)
doi: https://doi.org/10.3832/ifor3714-015
Published: Mar 26, 2022 - Copyright © 2022 SISEF

Review Papers

Tectona grandis Linn. f. (teak) is one of the most appreciated high-quality timber all over the world due to its economic value and wide array of applications. This tropical hardwood presents outstanding characteristics like pleasing aesthetic appearance, strength, lightness, ease of working, dimensional stability, and decay resistance. The latter quality is mainly ascribed to its extractives, which contain biologically active compounds (mainly quinones and anthraquinones) that confer a natural resistance against termites and fungi. This review focuses on teak secondary metabolites and the bioactivity potential of heartwood extractives. Furthermore, it covers the generalities of the teak tree and gives an overview on the approaches aimed to valorize the wastes from woodworking enterprises as a possible source of functional extractives and as an eco-friendly raw material. Notwithstanding the efforts made to elucidate the compounds present in teak wood, further research is needed to understand the chemical bases of its natural resistance to decay. Moreover, there is a lack of economic, technical, and ecotoxicity feasibility studies regarding extractives as a source of bioactive molecules for pharmaceutical, food, or cosmetics purposes.


Extractives, Natural Resistance, Bioactivity, Secondary Metabolites, Teak Heartwood

Authors’ address

Lucero Paola Chávez-Salgado 0000-0001-9520-5129
Virginie Vandenbossche 0000-0002-1294-7002
Gerard Vilarem
Laboratoire de Chimie Agro-industrielle - LCA, Université de Toulouse, Institut National Polytechnique de Toulouse - INP, 6 Allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4 (France)

Corresponding author

Lucero Paola Chávez-Salgado


Chávez-Salgado LP, Vandenbossche V, Vilarem G (2022). Tectona grandis Linn. f. secondary metabolites and their bioactive potential: a review. iForest 15: 112-120. - doi: 10.3832/ifor3714-015

Academic Editor

Luigi Todaro

Paper history

Received: Dec 07, 2020
Accepted: Jan 07, 2022

First online: Mar 26, 2022
Publication Date: Apr 30, 2022
Publication Time: 2.60 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 1421
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 0
Abstract Page Views: 0
PDF Downloads: 1237
Citation/Reference Downloads: 0
XML Downloads: 184

Web Metrics
Days since publication: 791
Overall contacts: 1421
Avg. contacts per week: 12.58

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Adegoke KA, Bello OS (2015)
Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry 12: 8-24.
CrossRef | Gscholar
Agarwal S, Sarngadharan M, Seshadri T (1965)
Colouring matter of teak leaves: isolation and constitution of tectoleafquinone. Tetrahedron Letters 6 (30): 2623-2626.
CrossRef | Gscholar
Ali I, Asim M, Khan TA (2012)
Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management 113: 170-183.
CrossRef | Gscholar
Balogun AO, Lasode OA, McDonald AG (2014)
Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresource Technology 156: 57-62.
CrossRef | Gscholar
Baptista I, Miranda I, Quilhó T, Gominho J, Pereira H (2013)
Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Industrial Crops and Products 50: 166-175.
CrossRef | Gscholar
Barbieri L, Andreola F, Lancellotti I, Taurino R (2013)
Management of agricultural biomass wastes: preliminary study on characterization and valorisation in clay matrix bricks. Waste Management 33 (11): 2307-2315.
CrossRef | Gscholar
Briz MW (2017)
Philippine Teak (Tectona philippinensis Benth. and Hook. f.). Research Information Series on Ecosystems 29 (1): 1-24.
Online | Gscholar
Brocco VF, Paes JB, Costa Da LG, Brazolin S, Arantes MDC (2017)
Potential of teak heartwood extracts as a natural wood preservative. Journal of Cleaner Production 142 (4): 2093-2099.
CrossRef | Gscholar
Camino DR, Morales JP (2013)
Las plantaciones de teca en América Latina: mitos y realidades [Teak plantations in Latin America: myths and realities]. CATIE, Costa Rica, pp. 392.
Online | Gscholar
Cansado IPP, Belo CR, Mourão PAM (2018)
Valorisation of Tectona grandis tree sawdust through the production of high activated carbon for environment applications. Bioresource Technology 249: 328-333.
CrossRef | Gscholar
Caringal AM, Buot I, Aragones EG (2015)
Population and reproductive phenology of the Philippine teak (Tectona philippinensis Benth. and Hook. f.) in Lobo Coast of Verde Island Passage, Batangas, Philippines. The Philippine Agricultural Scientist 98 (3): 312-322.
Online | Gscholar
Carrieri M, Bartolucci GB, Lee T, Barbero A, Harper M (2014)
Chemical markers of occupational exposure to teak wood dust. Annals of Occupational Hygiene 58 (5): 566-578.
CrossRef | Gscholar
Celedon JM, Bohlmann J (2018)
An extended model of heartwood secondary metabolism informed by functional genomics. Tree Physiology 38: 311-319.
CrossRef | Gscholar
Checker R, Patwardhan RS, Sharma D, Sandur SK (2018)
Chapter 16 - Chemopreventive and anticancer effects of plumbagin: novel mechanism(s) via modulation of cellular redox. In: “Role of Nutraceuticals in Cancer Chemosensitization, vol. 2” (Bharti AC, Aggarwal BB eds). Academic Press, Oxford, UK, pp. 325-341.
CrossRef | Gscholar
Cheng H, Kuo S-C, Lin W (1999)
Pharmacodynamic and pharmacokinetic studies of anthraquinone 2-carboxylic acid on passive cutaneous anaphylaxis in rats. Research Communications in Molecular Pathology and Pharmacology 105: 97-103.
Online | Gscholar
Christensen SB (2015)
Chapter 14 - Drugs and drug leads based on natural products for treatment and prophylaxis of malaria. In: “Evidence-Based Validation of Herbal Medicine” (Mukherjee PK ed). Elsevier, Boston, USA, pp. 307-319.
CrossRef | Gscholar
Coelho-Cerqueira E, Netz PA, Canto Do VP, Pinto AC, Follmer C (2014)
Beyond topoisomerase inhibition: antitumor 1.4-naphthoquinones as potential inhibitors of human monoamine oxidase. Chemical Biology and Drug Design 83: 401-410.
CrossRef | Gscholar
Costa WF, Oliveira AB, Nepomuceno JC (2011)
Lapachol as an epithelial tumor inhibitor agent in Drosophila melanogaster heterozygote for tumor suppressor gene wts. Genetics and Molecular Research 10: 3236-3245.
CrossRef | Gscholar
Diallo A, Gbeassor M, Vovor A, Eklu-Gadegbeku K, Aklikokou K, Agbonon A, Abena AA, De Souza C, Akpagana K (2008)
Effect of Tectona grandis on phenylhydrazine-induced anaemia in rats. Fitoterapia 79 (5): 332-336.
CrossRef | Gscholar
EDC (2020)
Tectona philippinensis. In: “IUCN Red List of Threatened Species 2020”. Energy Development Corporation - EDC, web site.
CrossRef | Gscholar
Epifano F, Genovese S, Fiorito S, Mathieu V, Kiss R (2014)
Lapachol and its congeners as anticancer agents: a review. Phytochemistry Reviews 13: 37-49.
CrossRef | Gscholar
Gašparík M, Gaff M, Kačík F, Sikora A (2019)
Color and chemical changes in Teak (Tectona grandis L. f.) and Meranti (Shorea spp.) wood after thermal treatment. BioResources 14: 2667-2683.
Online | Gscholar
Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S (2014)
Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. Journal of Industrial and Engineering Chemistry 20 (4): 2317-2324.
CrossRef | Gscholar
Giri SP, Varma SB (2015)
Analgesic and anti-inflammatory activity of Tectona grandis Linn. stem extract. Journal of Basic and Clinical Physiology and Pharmacology 26: 479-484.
CrossRef | Gscholar
Gupta PK, Singh P (2004)
A naphthoquinone derivative from Tectona grandis (Linn.). Journal of Asian Natural Products Research 6 (3): 237-240.
CrossRef | Gscholar
Hansen O, Changtragoon S, Ponoy B, Lopez J, Richard J, Kjaer ED (2017)
Worldwide translocation of teak origin of landraces and present genetic base. Tree Genetics & Genomes 13 (4): 135.
CrossRef | Gscholar
Hassan B, Mankowski ME, Kirker G, Ahmed S (2017)
Effects of heartwood extractives on symbiotic protozoan communities and mortality in two termite species. International Biodeterioration and Biodegradation 123: 27-36.
CrossRef | Gscholar
Hattori M (2000)
Dyes, Anthraquinone. In: “Kirk-Othmer Encyclopedia of Chemical Technology”. John Wiley and Sons, S. Diego, CA, USA, pp. 300-349.
CrossRef | Gscholar
Haupt M, Leithoff H, Meier D, Puls J, Richter HG, Faix O (2003)
Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.) a case study. Holz Als Roh- und Werkstoff 61: 473-474.
CrossRef | Gscholar
Huang J, Rücker A, Schmidt A, Gleixner G, Gershenzon J, Trumbore S, Hartmann H (2020)
Production of constitutive and induced secondary metabolites is coordinated with growth and storage in Norway spruce saplings. Tree Physiology 40: 928-942.
CrossRef | Gscholar
Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A (2005)
Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization. Bioresource Technology 96 (12): 1364-1369.
CrossRef | Gscholar
ITIS (2019)
Tectona grandis. Integrated Taxonomic Information System online database, USGS Science Analytics and Synthesis, USA, web site.
Online | Gscholar
ITTO (2019)
Teak (Tectona grandis). International Tropical Timber Organization, Japan, web site.
Online | Gscholar
Jamwal K, Bhattacharya S, Puri S (2018)
Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants 9: 26-38.
CrossRef | Gscholar
Kandioller W, Balsano E, Meier SM, Jungwirth U, Göschl S, Roller A, Jakupec MA, Berger W, Keppler BK, Hartinger CG (2013)
Organometallic anticancer complexes of lapachol: metal centre-dependent formation of reactive oxygen species and correlation with cytotoxicity. Chemical Communications 49: 3348-3350.
CrossRef | Gscholar
Kaosa-Ard A (1981)
Teak (Tectona grandis Linn.f.) its natural distribution and related factors. Natural History Bulletin Siam Society 29: 55-74.
Online | Gscholar
Keogh RM (1982)
Teak (Tectona grandis Linn. f.) provisional site classification chart for the Caribbean, Central America, Venezuela and Colombia. Forest Ecology and Management 4 (2): 143-153.
CrossRef | Gscholar
Khan RM, Mlungwana SM (1999)
5-hydroxylapachol: a cytotoxic agent from Tectona grandis. Phytochemistry 50 (3): 439-442.
CrossRef | Gscholar
Khan Z, Ali M, Bagri P (2010)
A new steroidal glycoside and fatty acid esters from the stem bark of Tectona grandis Linn. Natural Product Research 24 (11): 1059-1068.
CrossRef | Gscholar
Kirker GT, Blodgett AB, Arango RA, Lebow PK, Clausen CA (2013)
The role of extractives in naturally durable wood species. International Biodeterioration and Biodegradation 82: 53-58.
CrossRef | Gscholar
Kokutse AD, Stokes A, Baillères H, Kokou K, Baudassé C (2006)
Decay resistance of Togolese teak (Tectona grandis L. f) heartwood and relationship with colour. Trees 20: 219-223.
CrossRef | Gscholar
Kollert W, Cherubini L (2012)
Teak resources and market assessment 2010. FAO Planted Forests and Trees Working Paper no. FP/47/E:52, Rome, Italy, pp. 4.
Online | Gscholar
Kollert W, Walotek PJ (2015)
Global teak trade in the aftermath of Myanmar’s log export ban. FAO Planted Forests and Trees Working Paper no. FP/49/E:36, Rome, Italy, pp. 36.
Online | Gscholar
Kollert W, Kleine M (2017)
The global teak study. Analysis, evaluation and future potential of teak resources. IUFRO World Series, vol. 36, International Union of Forest Research Organizations, Vienna, Austria, pp. 108.
Online | Gscholar
Kopa TK, Tchinda AT, Tala MF, Zofou D, Jumbam R, Wabo HK, Titanji VPK, Frédérich M, Tan N-H, Tane P (2014)
Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochemistry Letters 8: 41-45.
CrossRef | Gscholar
Krishna MS, Nair AJ (2010)
Antibacterial, cytotoxic and antioxidant potential of different extracts from leaf, bark and wood of Tectona grandis. International Journal of Pharmaceutical Sciences and Drug Research 2 (2): 155-158.
Online | Gscholar
Lacret R, Varela RM, Molinillo JMG, Nogueiras C, Macías FA (2011)
Anthratectone and naphthotectone, two quinones from bioactive extracts of Tectona grandis. Journal of Chemical Ecology 37 (12): 1341-1348.
CrossRef | Gscholar
Lacret R, Varela RM, Molinillo JMG, Nogueiras C, Macías FA (2012)
Tectonoelins, new norlignans from a bioactive extract of Tectona grandis. Phytochemistry Letters 5 (2): 382-386.
CrossRef | Gscholar
Lanka S, Parimala X (2017)
Antimicrobial activities of Tectona grandis leaf and bark extracts. European Journal of Pharmaceutical and Medical Research 4 (12): 245-248.
Li Y, Chen B, Zhu L (2010)
Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark. Bioresource Technology 101 (19): 7307-7313.
CrossRef | Gscholar
Lourenço A, Neiva DM, Gominho J, Marques AV, Pereira H (2015)
Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py-GC-MS/FID. Wood Science and Technology 49 (1): 159-175.
CrossRef | Gscholar
Lu J-J, Bao J-L, Wu G-S, Xu W-S, Huang M-Q, Chen X-P, Wang Y-T (2013)
Quinones derived from plant secondary metabolites as anti-cancer agents. Anti-Cancer Agents in Medicinal Chemistry 13: 456-463.
Lu Y-J, Tsai M-J, Chang F-C (2017)
Forest waste derived fuel with waste cooking oil. Energy Procedia 105: 1250-1254.
CrossRef | Gscholar
Lukmandaru G (2012a)
Bioactive extracts from neutrals of teakwood (Tectona grandis L. f.). In: Proceedings of the “3rd International Symposium of Indonesian Wood Research Society”. IWoRS, Indonesia, pp. 328-332.
Online | Gscholar
Lukmandaru G (2012b)
Chemotaxonomic study based on the variation of quinone compounds in the heartwood of Javanese teak using GC-MS. In: “Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications” (Salih B, Çelikbiçak O eds). InTech, Croatia, pp. 31-38.
Online | Gscholar
Lukmandaru G (2015a)
Chemical characteristics of teak wood attacked by neotermes tectonae. Bioresources 10: 2094-2102.
CrossRef | Gscholar
Lukmandaru G (2015b)
Quinones distribution of teak wood grown in community forest. Jurnal Ilmu Dan Teknologi Kayu Tropis 13 (2): 193-204.
Online | Gscholar
Lukmandaru G, Takahashi K (2009)
Radial distribution of quinones in plantation teak (Tectona grandis L. f.). Annals of Forest Science 66 (6): 605.
CrossRef | Gscholar
Macías FA, Lacret R, Varela RM, Nogueiras C, Molinillo JMG (2008)
Bioactive apocarotenoids from Tectona grandis. Phytochemistry 69 (15): 2708-2715.
CrossRef | Gscholar
Macías FA, Lacret R, Varela RM, Nogueiras C, Molinillo JMG (2010)
Isolation and phytotoxicity of terpenes from Tectona grandis. Journal of Chemical Ecology 36 (4): 396-404.
CrossRef | Gscholar
Majumdar M, Nayeem N, Kamath JV, Asad M (2007)
Evaluation of Tectona grandis leaves for wound healing activity. Pakistan Journal of Pharmaceutical Sciences 20: 120-124.
Online | Gscholar
Mankowski M, Boyd B, Hassan B, Kirker GT (2016)
GC-MS characterizations of termiticidal heartwood extractives from wood species utilized in Pakistan. In: Proceedings of the “47th IRG Annual Meeting”, Section 1 Biology. Lisbon (Portugal) 15-19 May 2016. The International Research Group on Wood Protection, Stockholm, Sweden, pp. 1-16.
Online | Gscholar
Markets&Markets (2021)
Squalene market global forecast to 2025. Markets and Markets, USA, web site.
Online | Gscholar
Mburu F, Dumarçay S, Gérardin P (2007)
Evidence of fungicidal and termicidal properties of Prunus africana heartwood extractives. Holzforschung 61 (3): 323-325.
CrossRef | Gscholar
Micera M, Botto A, Geddo F, Antoniotti S, Bertea CM, Levi R, Gallo MP, Querio G (2020)
Squalene: more than a step toward sterols. Antioxidants 9 (8): 688.
CrossRef | Gscholar
Minn Y, Gailing O, Finkeldey R (2015)
Genetic diversity and structure of teak (Tectona grandis L. f.) and dahat (Tectona hamiltoniana Wall.) based on chloroplast microsatellites and amplified fragment length polymorphism markers. Genetic Resources and Crop Evolution 63: 961-974.
CrossRef | Gscholar
Miranda I, Sousa V, Pereira H (2011)
Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. Journal of Wood Science 57: 171-178.
CrossRef | Gscholar
Mohanty K, Das D, Biswas MN (2005)
Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chemical Engineering Journal 115 (1): 121-131.
CrossRef | Gscholar
Moya R, Rodríguez-Zúñiga A, Puente-Urbina A (2017)
Thermogravimetric and devolatilisation analysis for five plantation species: effect of extractives, ash compositions, chemical compositions and energy parameters. Thermochimica Acta 647: 36-46.
CrossRef | Gscholar
Nayeem N, Karvekar M (2010)
Isolation of phenolic compounds from the methanolic extract of Tectona grandis. Research Journal of Pharmaceutical Biological and Chemical Sciences 1 (2): 221-225.
Online | Gscholar
Neamatallah A, Yan L, Dewar SJ, Austin B (2005)
An extract from teak (Tectona grandis) bark inhibited Listeria monocytogenes and methicillin resistant Staphylococcus aureus. Letters in Applied Microbiology 41 (1): 94-96.
CrossRef | Gscholar
Neha K, Sangeeta B (2013)
Phytochemical and pharmacological evaluation of Tectona grandis Linn. International Journal of Pharmacy and Pharmaceutical Sciences 5: 923-927.
Niamké FB, Amusant N, Charpentier J-P, Chaix G, Baissac Y, Boutahar N, Adima AA, Kati-Coulibaly S, Jay-Allemand C (2011)
Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f.). Annals of Forest Science 68: 201-211.
CrossRef | Gscholar
Niamké FB, Amusant N, Stien D, Chaix G, Lozano Y, Kadio AA, Lemenager N, Goh D, Adima AA, Kati-Coulibaly S, Jay-Allemand C (2012)
4′,5′-dihydroxy-epiisocatalponol, a new naphthoquinone from Tectona grandis L. f. heartwood, and fungicidal activity. International Biodeterioration and Biodegradation 74: 93-98.
CrossRef | Gscholar
Niamké FB, Amusant N, Kadio AA, Thévenon M, Nourissier S, Adima AA, Jay-Allemand C, Chaix G (2014)
Rapid prediction of phenolic compounds as chemical markers for the natural durability of teak (Tectona grandis Linn. f.) heartwood by near infrared spectroscopy. Journal of Near Infrared Spectroscopy 22 (1): 35-43.
CrossRef | Gscholar
Nidavani RB (2014)
Teak (Tectona grandis Linn.): a renowned timber plant with potential medicinal values. International Journal of Pharmacy and Pharmaceutical Sciences 6 (1): 48-54.
Niehues M, Barros VP, Emery FS, Dias-Baruffi M, Assis MD, Lopes NP (2012)
Biomimetic in vitro oxidation of lapachol: a model to predict and analyse the in vivo phase I metabolism of bioactive compounds. European Journal of Medicinal Chemistry 54: 804-812.
CrossRef | Gscholar
Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009)
Tectona grandis. Agroforestry database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya, web site.
Online | Gscholar
Pagare S, Bhatia M, Tripathi N, Bansal YK (2015)
Secondary metabolites of plants and their role: overview. Current Trends in Biotechnology and Pharmacy 9: 293-304.
Online | Gscholar
Palanisamy K, Hegde M, Yi JS (2009)
Teak (Tectona grandis Linn. f.): a renowned commercial timber species. Journal of Forest and Environmental Science 25 (1): 1-24.
Online | Gscholar
Park JG, Kim SC, Kim YH, Yang WS, Kim Y, Hong S, Kim K-H, Yoo BC, Kim SH, Kim J-H, Cho JY (2016)
Anti-Inflammatory and antinociceptive activities of anthraquinone-2-carboxylic acid. Mediators of Inflammation 2016: 1903849.
CrossRef | Gscholar
Patel VK, Rawat N (2017)
Physico-mechanical properties of sustainable Sagwan-Teak wood flour/polyester composites with/without gum rosin. Sustainable Materials and Technologies 13: 1-8.
CrossRef | Gscholar
Patil S, Renukdas S, Patel N (2011)
Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder. International Journal of Enviromental Sciences 1 (5): 711-726. -
Online | Gscholar
Petchwattana N, Covavisaruch S (2014)
Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly(lactic acid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionic Engineering 11: 630-637.
CrossRef | Gscholar
Popa I, Babeanu N, Nita S, Popa O (2014)
Squalene - Natural resources and applications. Farmacia 62: 840-862.
Qiu H, Liu R, Long L (2019)
Analysis of chemical composition of extractives by acetone and the chromatic aberration of Teak (Tectona grandis L.f.) from China. Molecules 24: 1989.
CrossRef | Gscholar
Ragasa CY, Tepora MM, Espinelli DH, Mandia EH, Rideout JA (2008)
Chromomoric acid derivatives from Tectona philippinensis. Journal of Natural Products 71 (4): 701-705.
CrossRef | Gscholar
Ramesh BN, Mahalakshmi AM (2014)
Pharmacology of Tectona grandis Linn.: short review. International Journal of Pharmacognosy and Phytochemical Research 6 (1): 86-90.
Online | Gscholar
Ravelo AG, Estévez-Braun A, Pérez-Sacau E (2003)
The chemistry and biology of lapachol and related natural products α- and β-lapachones. In: “Studies in Natural Products Chemistry” (Atta-ur-Rahman ed). Elsevier, The Netherlands, pp. 719-760.
CrossRef | Gscholar
Rizanti DE, Darmawan W, George B, Merlin A, Dumarcay S, Chapuis H, Gérardin C, Gelhaye E, Raharivelomanana P, Kartika Sari R, Syafii W, Mohamed R, Gerardin P (2018)
Comparison of teak wood properties according to forest management: short versus long rotation. Annals of Forest Science 75 (2): 241.
CrossRef | Gscholar
Rocha MN, Nogueira PM, Demicheli C, De Oliveira LG, Da Silva MM, Frézard F, Melo MN, Soares RP (2013)
Cytotoxicity and in vitro antileishmanial activity of antimony (V), bismuth (V), and tin (IV) complexes of lapachol. Bioinorganic Chemistry and Applications 2013: 961783.
CrossRef | Gscholar
Sangeetha K, Purushothaman I, Rajarajan S (2017)
Spectral characterisation, antiviral activities, in silico ADMET and molecular docking of the compounds isolated from Tectona grandis to chikungunya virus. Biomedicine and Pharmacotherapy 87: 302-310.
CrossRef | Gscholar
Singh P, Jain S, Bhargava S (1989)
A 1.4-anthraquinone derivative from Tectona grandis. Phytochemistry 28 (4): 1258-1259.
CrossRef | Gscholar
Singh N, Shukla N, Singh P, Sharma R, Rajendran SM, Maurya R, Palit G (2010)
Verbascoside isolated from Tectona grandis mediates gastric protection in rats via inhibiting proton pump activity. Fitoterapia 81: 755-761.
CrossRef | Gscholar
Singh T, Singh AP (2012)
A review on natural products as wood protectant. Wood Science and Technology 46: 851-870.
CrossRef | Gscholar
Singh HB, Bharati KA (2014)
Chapter 6 - Enumeration of dyes. In: “Handbook of Natural Dyes and Pigments” (Singh HB, Bharati KA eds). Woodhead Publishing India, Delhi, India, pp. 33-260.
CrossRef | Gscholar
Sousa S, Jiménez-Guerrero P, Ruiz A, Ratola N, Alves A (2011)
Organochlorine pesticides removal from wastewater by pine bark adsorption after activated sludge treatment. Environmental Technology 32 (6): 673-683.
CrossRef | Gscholar
Sultana S, Asif HM, Akhtar N, Ahmad K (2015)
Medicinal plants with potential antipyretic activity: a review. Asian Pacific Journal of Tropical Disease 5: 202-208.
CrossRef | Gscholar
Sumthong P, Romero-González RR, Verpoorte R (2008)
Identification of anti-wood rot compounds in teak (Tectona grandis L.f.) sawdust extract. Journal of Wood Chemistry and Technology 28 (4): 247-260.
CrossRef | Gscholar
Sundararaj R, Shanbhag RR, Nagaveni HC, Vijayalakshmi G (2015)
Natural durability of timbers under Indian environmental conditions - An overview. International Biodeterioration and Biodegradation 103: 196-214.
CrossRef | Gscholar
Thulasidas PK, Bhat KM (2007)
Chemical extractive compounds determining the brown-rot decay resistance of teak wood. Holz Als Roh- und Werkstoff 65 (2): 121-124.
CrossRef | Gscholar
Väisänen T, Haapala A, Lappalainen R, Tomppo L (2016)
Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Management 54 (4): 62-73.
CrossRef | Gscholar
Varelas V, Langton M (2017)
Forest biomass waste as a potential innovative source for rearing edible insects for food and feed - a review. Innovative Food Science & Emerging Technologies 41 (4): 193-205.
CrossRef | Gscholar
Vázquez G, González-Alvarez J, García AI, Freire MS, Antorrena G (2007)
Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: equilibrium and kinetics. Bioresource Technology 98 (8): 1535-1540.
CrossRef | Gscholar
Verhaegen D, Fofana IJ, Logossa ZA, Ofori D (2010)
What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and in Indonesia? Tree Genetics and Genomes 6 (5): 717-733.
CrossRef | Gscholar
Vuolo MM, Lima VS, Maróstica Junior MR (2019)
Chapter 2 - Phenolic compounds: structure, classification, and antioxidant power. In: “Bioactive Compounds. Health Benefits and Potential Applications” (Campos MRS ed). Woodhead Publishing, UK, pp. 33-50.
CrossRef | Gscholar
Vyas P, Yadav DK, Khandelwal P (2019)
Tectona grandis (teak) - A review on its phytochemical and therapeutic potential. Natural Product Research 33: 2338-2354.
CrossRef | Gscholar
Windeisen E, Klassen A, Wegener G (2003)
On the chemical characterisation of plantation teakwood from Panama. Holz Als Roh- und Werkstoff 61 (6): 416-418.
CrossRef | Gscholar
Yang G, Liang K, Zhou Z, Wang X, Huang G (2020)
UPLC-ESI-MS/MS-based widely targeted metabolomics analysis of wood metabolites in teak (Tectona grandis). Molecules 25 (9): 2189.
CrossRef | Gscholar
Zofou D, Kuete V, Titanji VPK (2013)
Chapter 17 - Antimalarial and other antiprotozoal products from African medicinal plants. In: “Medicinal Plant Research in Africa” (Kuete V ed). Elsevier, Oxford, UK, pp. 661-709.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info