*
 

iForest - Biogeosciences and Forestry

*

Adaptability and interspecific variability in growth and leaf traits of eucalypt

Chrissy Garel Makouanzi Ekomono (1-2-3)   , Castela Bath Shéba Vitel Loubassou (3), Mavie Parfait Mbama (4), Grace Jopaul Loubota Panzou (5), Philippe Vigneron (6)

iForest - Biogeosciences and Forestry, Volume 14, Issue 6, Pages 560-568 (2021)
doi: https://doi.org/10.3832/ifor3660-014
Published: Dec 09, 2021 - Copyright © 2021 SISEF

Research Articles


Effective adaptability of plants to new environments can be analysed in terms of survival rate. Analysing the traits that favour adaptation to environmental changes provides a more in-depth understanding of the mechanisms involved. Local adaptation occurs because different environmental factors exert selective pressure across habitats. Understanding the leaf mechanisms underlying plant survival and growth is crucial to determine why local adaptation involves trade-offs. A comparative provenance test on 29 eucalyptus species was conducted to improve our understanding of species adaptation strategies on coastal plains of Pointe-Noire, Republic of the Congo. We studied the different functional traits to determine how plants function and to highlight the different species’ adaptive strategies. For each species, survival, growth traits and leaf traits were measured, and the climatic factors of the origin area for each species was taken into account. Cluster analysis was performed on groups of species with a similar growth strategy. The results revealed general trends that explain the physiological mechanisms involved in the species’ local adaptation. Indeed, species have survived to current environmental changes by adjusting their specific leaf area plasticity. The 32 provenances of eucalyptus were subdivided into four groups by cluster analysis. The first cluster included two species (E. pilularis and E. peltata) that are totally unsuited to the local conditions in Pointe-Noire, with the slowest growth rate and smallest specific leaf area. The second cluster contained species that showed a wide variety of growing strategies, allowing them to adapt to local conditions. The third cluster included a species that is specialised in obtaining large quantities of resources, while investing very little in growth. The fourth cluster included species that acquired and used resources at a slow rate. Leaf anatomy was quite responsive to climatic conditions. We evaluated the different strategies and found that eucalyptus species had very diverse functional traits, which may explain their broad ecological range.

  Keywords


Adaptability, Eucalyptus, Foliar Traits, Growth Strategies, Clustering Analysis

Authors’ address

(1)
Chrissy Garel Makouanzi Ekomono 0000-0003-0920-5216
Ecole Nationale Supérieure d’Agronomie et de Foresterie (ENSAF), Marien Ngouabi University, Brazzaville (Republic of the Congo)
(2)
Chrissy Garel Makouanzi Ekomono 0000-0003-0920-5216
Centre de Recherche sur la Durabilité et la Productivité des Plantations Industrielles - CRDPI, Pointe-Noire (Republic of the Congo)
(3)
Chrissy Garel Makouanzi Ekomono 0000-0003-0920-5216
Castela Bath Shéba Vitel Loubassou
Institut National de Recherche Forestière - IRF, Brazzaville (Republic of the Congo)
(4)
Mavie Parfait Mbama
Programme National d’Afforestation et de Reboisement - PRONAR, Brazzaville (Republic of the Congo)
(5)
Grace Jopaul Loubota Panzou 0000-0002-6466-1508
Laboratoire de Biodiversité, Gestion des Ecosystèmes et de l’Environnement - LBGE, Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville (Republic of the Congo)
(6)
Philippe Vigneron
Centre de Coopération International de Recherche en Agronomie pour le Développement - CIRAD, UMR AGAP, Amélioration Génétique et Adaptation des Plantes Tropicales et Méditerranéennes, Montpellier (France)

Corresponding author

 
Chrissy Garel Makouanzi Ekomono
garelmak@yahoo.fr

Citation

Makouanzi Ekomono CG, Loubassou CBSV, Mbama MP, Loubota Panzou GJ, Vigneron P (2021). Adaptability and interspecific variability in growth and leaf traits of eucalypt. iForest 14: 560-568. - doi: 10.3832/ifor3660-014

Academic Editor

Rossella Guerrieri

Paper history

Received: Sep 26, 2020
Accepted: Oct 10, 2021

First online: Dec 09, 2021
Publication Date: Dec 31, 2021
Publication Time: 2.00 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 1742
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 0
Abstract Page Views: 0
PDF Downloads: 1484
Citation/Reference Downloads: 3
XML Downloads: 255

Web Metrics
Days since publication: 869
Overall contacts: 1742
Avg. contacts per week: 14.03

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002)
Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130 (3): 449-457.
CrossRef | Gscholar
(2)
Ahrens CW, Andrew ME, Mazanec RA, Ruthrof KX, Challis A, Hardy G, Byrne M, Tissue DT, Rymer PD (2020)
Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecology and Evolution 10: 232-248.
CrossRef | Gscholar
(3)
Bouvet J-M, Makouanzi Ekomono CG, Brendel O, Laclau J-P, Bouillet J-P, Epron D (2020)
Selecting for water use efficiency, wood chemical traits and biomass with genomics selection in a Eucalyptus breeding program. Forest Ecology and Management 465: 118092.
CrossRef | Gscholar
(4)
Brezard JM (1982)
Les eucalyptus introduits au Congo 1953-1981 [Eucalyptus introduced to Congo 1953-1981]. Note interne CTFT, Pointe-Noire, Republic of Congo, pp. 100.
Gscholar
(5)
Cossalter C, Vigneron P, Brooker MIH (1999)
Eucalyptus d’Australie. Habitats naturels et dynamique d’évolution [Australian eucalyptus. Natural habitats and dynamics of evolution]. Le Flamboyant 49: 15-20. [in French]
Online | Gscholar
(6)
Díaz S, Cabido M, Casanoves F (1998)
Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9: 113-122.
CrossRef | Gscholar
(7)
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, De Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004)
The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science 15: 295-304.
CrossRef | Gscholar
(8)
Dillon S, McEvoy R, Baldwin DS, Rees GN, Parsons Y, Southerton S (2014)
Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehn. (River Red Gum). PLoS One 9 (8): e103515.
CrossRef | Gscholar
(9)
Drenovsky RE, Grewell BJ, D’Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012)
A functional trait perspective on plant invasion. Annals of Botany 110 (1): 141-153.
CrossRef | Gscholar
(10)
El-Lakany MH, El-Osta ML, Badran AO (1980)
Evaluation of newly introduced Eucalyptus camaldulensis provenances in Egypt. Alexandria Journal of Agricultural Research 28: 309-319.
Gscholar
(11)
FAO (2014)
Global plan of action for the conservation, sustainable use and development of forest genetic resources. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 31.
Online | Gscholar
(12)
FAO (2015)
Coping with climate change - the roles of genetics resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 130.
Gscholar
(13)
Franks SJ, Hoffmann AA (2012)
Genetics of climate change adaptation. Annual Review of Genetics 46: 185-208.
CrossRef | Gscholar
(14)
Gardner A (2017)
The purpose of adaptation. Interface Focus 7: 20170005.
CrossRef | Gscholar
(15)
Grime JP (1977)
Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111: 1169-1195.
CrossRef | Gscholar
(16)
Groulez J (1964)
Introduction d’eucalyptus au Congo Brazzaville [Introduction of eucalyptus to Congo Brazzaville]. Bois et Forêts des Tropiques 93: 3-14. [in French]
Online | Gscholar
(17)
Hunde T, Belachew Gizachew B, Harwood C (2007)
Genetic variation in survival and growth of Eucalyptus globulus ssp. globulus in Ethiopia. Australian Forestry 70 (1): 48-52.
CrossRef | Gscholar
(18)
James S, Bell D (1995)
Morphology and anatomy of leaves of Eucalyptus camaldulensis clones: variation between geographically separated locations. Australian Journal of Botany 43: 415-433.
CrossRef | Gscholar
(19)
Jamet R, Rieffel JM (1976)
Carte pédologique du Congo à 1/200.000, feuille Pointe-Noire, feuille Loubomo, notice d’exploitation n°65 [Soil map of Congo at 1/200.000, Pointe-Noire sheet, Loubomo sheet, operating manual no. 65]. ORSTOM, Paris, France, pp. 177. [in French]
Online | Gscholar
(20)
Jump AS, Peñuelas J (2005)
Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters 8: 1010-1020.
CrossRef | Gscholar
(21)
Kawecki TJ, Ebert D (2004)
Conceptual issues in local adaptation. Ecology Letters 7: 1225-1241.
CrossRef | Gscholar
(22)
Kremer A (2000)
Changements climatiques et diversité génétique [Climate change and genetic diversity]. Revue Forestière Française 52: 91-98. [in French]
CrossRef | Gscholar
(23)
Laclau J-P, Gay F, Bouillet J-P, Bouvet J-M, Chaix G, Clément-Demange A, Do F, Epron D, Favreau B, Gion J-M, Nouvellon Y, Pujade-Renaud V, Thaler P, Verhaegen D, Vigneron P (2016)
Adaptation and mitigation in tropical tree plantations. In: “Climate Change and Agriculture Worldwide” (Torquebiau E ed). Springer, Dordrecht, Netherlands, pp. 197-208.
CrossRef | Gscholar
(24)
Lambers H, Poorter H (1992)
Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187-261.
CrossRef | Gscholar
(25)
Lavorel S, Garnier E (2002)
Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-556.
CrossRef | Gscholar
(26)
Leimu R, Fischer M (2008)
A meta-analysis of local adaptation in plants. PLoS One 3 (12): e4010.
CrossRef | Gscholar
(27)
Lemcoff JH, Guarnaschelli AB, Garau AM, Prystupa P (2002)
Elastic and osmotic adjustments in rooted cuttings of several clones of Eucalyptus camaldulensis Dehn. from southeastern Australia after a drought. Flora - Morphology, Distribution. Functional Ecology of Plants 197: 134-142.
CrossRef | Gscholar
(28)
Liu M, Wang Z, Li S, Lu X, Wang X, Han X (2017)
Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Scientific Reports 7: 10780.
CrossRef | Gscholar
(29)
Loo J, Fady B, Dawson I, Vinceti B, Baldinelli G (2011)
Climate change and forest genetic resources: state of knowledge, risks and opportunities. Commission on Genetic Resources for Food and Agriculture, FAO Background Study Paper No. 56, Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 29.
Online | Gscholar
(30)
Morshet S (1981)
Physiological activity in a semiarid environment of Eucalyptus camaldulensis Dehn. from two provenances. Australian Journal of Botany 29: 97-110.
CrossRef | Gscholar
(31)
Niinemets U (1999)
Research review. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144 (1): 35-47.
CrossRef | Gscholar
(32)
Nzila JDD (2001)
Caractérisation minéralogique des sols ferralitiques sableux sous plantation d’Eucalyptus et sous savane naturelle de la région de Pointe-Noire (Congo). [Mineralogical characterization of sandy ferralitic soils under Eucalyptus plantation and natural savannah in the Pointe-Noire region (Congo)]. Rapport UR2PI, Pointe-Noire, Republic of Congo, pp. 51. [in French]
Gscholar
(33)
Otegbeye GO (1985)
Provenance productivity in Eucalyptus camaldulensis and its implications to genetic improvement in the savanna region of Nigeria. Silvae Genetica 121-126.
Gscholar
(34)
Parmesan C (2006)
Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637-669.
CrossRef | Gscholar
(35)
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JH (2013)
New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61 (3): 167.
CrossRef | Gscholar
(36)
Price TD, Qvarnström A, Irwin DE (2003)
The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London, Series B 270: 1433-1440.
CrossRef | Gscholar
(37)
Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003)
The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164 (S3): S143-S164.
CrossRef | Gscholar
(38)
Saadaoui E, Ben Yahia K, Dhahri S, Mohamed Lahbib Ben Jamaa ML, Mohamed Larbi Khouja ML (2018)
An overview of adaptative responses to drought stress in Eucalyptus spp. Forestry Studies / Metsanduslikud Uurimused 67 (1): 86-96.
CrossRef | Gscholar
(39)
Savolainen O, Lascoux M, Merilä J (2013)
Ecological genomics of local adaptation. Nature Reviews Genetics 14: 807-820.
CrossRef | Gscholar
(40)
Scheepens JF, Frei ES, Stöcklins J (2010)
Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia 164: 141-150.
CrossRef | Gscholar
(41)
Sefton CA, Montagu K, Atwell BJ, Conroy JP (2002)
Anatomical variation in juvenile eucalypt leaves accounts for differences in specific leaf area and CO2 assimilation rates. Austrian Journal of Botany 50: 301-310.
CrossRef | Gscholar
(42)
Steane DA, Mclean EH, Potts BM, Prober SM, Stock WD, Stylianou VM, Vaillancourt RE, Byrne M (2017)
Evidence for adaptation and acclimation in a widespread eucalypt of semi-arid Australia. Biological Journal of the Linnean Society 121: 484-500.
CrossRef | Gscholar
(43)
Thongo M’Bou A (2008)
Etude du système racinaire de l’Eucalyptus en plantation tropicale: analyse architecturale, croissance et respiration. [Study of the root system of Eucalyptus in tropical plantations: architectural analysis, growth and respiration]. Thèse de l’Université Henri Poincaré, Nancy I et de l’Université Marien Ngouabi, Brazzaville, Republic of Congo, pp. 183. [in French]
Online | Gscholar
(44)
Thumma BR, Sharma N, Southerton SG (2012)
Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection. BioMedCentral Genomics 13: 364.
Online | Gscholar
(45)
Vandewalle M, De Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, Da Silva PM, Moretti M, Niemela J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010)
Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity Conservation 19: 2921-2947.
CrossRef | Gscholar
(46)
VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB (2019)
A molecular view of plant local adaptation: incorporating stress-response networks. Annual Review of Plant Biology 70: 559-83.
CrossRef | Gscholar
(47)
Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C, Midgley GF (2005)
Specific leaf area and dry matter content estimate thickness in laminar leaves. Annals of Botany 96 (6): 1129-1136.
CrossRef | Gscholar
(48)
Wright IJ, Reich PB, Westoboty M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004)
The worldwide leaf economics spectrum. Nature 428 (6985): 821-827.
CrossRef | Gscholar
(49)
Wright SJ, Zhou DC, Kuhle A, Olsen KM (2018)
Continent-wide climatic variation drives local adaptation in North American white clover. Journal of Heredity 109 (1): 78-89.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info