iForest - Biogeosciences and Forestry


Forest management with carbon scenarios in the central region of Mexico

Agustín Ramírez-Martínez (1), Manuel de Jesús González-Guillén (1)   , Héctor Manuel De Los Santos-Posadas (1), Gregorio Ángeles-Pérez (1), Wenceslao Santiago-García (2)

iForest - Biogeosciences and Forestry, Volume 14, Issue 5, Pages 413-420 (2021)
doi: https://doi.org/10.3832/ifor3630-014
Published: Sep 15, 2021 - Copyright © 2021 SISEF

Research Articles

The search for mechanisms to mitigate global warming has generated a series of proposals to reduce deforestation and promote conservation of forests as carbon stocks through financial or in-kind support. However, the economic implications of including carbon sequestration in forest for timber production have not been dealt with in depth, and the conditions in which combined production might be a profitable option to forest owners, particularly in Mexico, are unknown. The aim of this study was to quantify carbon sequestration in a central region of Mexico and evaluate the profitability of selling carbon credits as well as timber products. Data and information used comes from three inventories (2013, 2014 and 2016) taken in 160 permanent sampling plots of 400 m2 each; forest management costs per hectare were obtained through interviews to the landowners, and the profitability was assessed using the economic indicators Net Present Value (NPV), Internal Return Rate (IRR), Benefit-Cost Ratio (BCR), and Land Expected Value (LEV). The results indicate that, in areas of low productivity, carbon sequestration is profitable only at a low discount rate (3.5%) and a high price of the ton CO2e (US$ 100 ha-1 year-1). However, under combined production, the optimal rotation periods are longer, depending on the discount rate and price of sequestered carbon. Therefore, timber production will continue to be the main economic activity, until the rules of operation of the different mechanisms created for carbon sequestration become more flexible and the carbon markets offer more attractive incentives.


Climate Change, Carbon Sequestration, Productivity, Financial Profitability, Optimal Rotation

Authors’ address

Wenceslao Santiago-García 0000-0003-1958-1696
Instituto de Estudios Ambientales-División de Estudios de Postgrado-Ingeniería Forestal, Universidad de la Sierra Juárez, Avenida Universidad s/n, C. P. 68725, Ixtlán de Juárez, Oaxaca (México)

Corresponding author

Manuel de Jesús González-Guillén


Ramírez-Martínez A, González-Guillén MJ, De Los Santos-Posadas HM, Ángeles-Pérez G, Santiago-García W (2021). Forest management with carbon scenarios in the central region of Mexico. iForest 14: 413-420. - doi: 10.3832/ifor3630-014

Academic Editor

Marco Borghetti

Paper history

Received: Aug 19, 2020
Accepted: Jul 13, 2021

First online: Sep 15, 2021
Publication Date: Oct 31, 2021
Publication Time: 2.13 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 3642
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 468
Abstract Page Views: 53
PDF Downloads: 2793
Citation/Reference Downloads: 6
XML Downloads: 322

Web Metrics
Days since publication: 987
Overall contacts: 3642
Avg. contacts per week: 25.83

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Abedi T, Mohammadi S, Bonyad A, Torkaman J (2018)
Optimal rotation age of Populus deltoides considering economic value of timber harvesting and carbon sequestration. Austrian Journal of Forest Science 135: 315-342.
Online | Gscholar
Ackerman F (1993)
The natural interest rate of the forest: macroeconomic requirements for sustainable development. Ecological Economics 10: 21-26.
CrossRef | Gscholar
Ajete I, Mercadet D, Alvarez D, Toirac I, Conde I (2012)
Estimación del contenido de carbono en los bosques de la empresa forestal integral Guantánamo [Estimation of the carbon content in the forests the forest integral company Guantanamo]. Revista Forestal Baracoa 31: 3-8. [in Spanish]
Angeles G, Méndez B, Valdez R, Plascencia O, De los Santos HM, Chávez G, Ortiz D, Soriano A, Zaragoza Z, Ventura E, Martínez A, Wayson C, López D, Olguín M, Carrillo O, Maldonado V (2015)
Estudio de caso del sitio de monitoreo intensivo del carbono en Hidalgo. Fortalecimiento REDD+ y Cooperación Sur [Case study of the site of intensive carbon monitoring in Hidalgo. Strengthening REDD + and South Cooperation]. CONAFOR, COLPOS, Mexico, pp. 105. [in Spanish]
Bettinger P, Boston K, Siry JP, Grebner DL (2017)
Forest management and planning (2nd edn). Academic Press, New York, USA, pp. 349.
Online | Gscholar
Blomley T, Iddi S (2009)
Participatory forest management in Tanzania. 1993-2009: lessons learned and experiences to date. Ministry of Natural Resources and Tourism - URT, Forestry and Beekeeping Division, Dar es Salaam, Tanzania, pp. 72.
Online | Gscholar
Chagoya JL, Iglesias G (2009)
Esquema de pago por servicios ambientales de la Comisión Nacional Forestal, México [Payment scheme for environmental services of the National Forestry Commission, Mexico]. In: “Políticas Públicas y Sistemas de Incentivos Para el Fomento y Adopción de Buenas Prácticas Agrícolas: Como Medida de Adaptación al Cambio Climático en América Central” (Sepúlveda C, Ibrahim M eds). Primera Edición, Turrialba, CATIE, Costa Rica, pp. 291-292. [In Spanish]
Online | Gscholar
Chaudhary M (2009)
Assessing the protection of forest based environmental services in the Greater Mekong sub-region. Asia-Pacific Forestry Sector Outlook Study II, Working Paper Series vol. 14, FAO/UN, Bangkok, Thailand, pp. 67.
Clutter JL, Forston JC, Pienaar LV, Brister GH, Bailey RL (1983)
Timber management: a quantitative approach. John Wiley and Sons, Inc., New York, USA, pp. 333.
Online | Gscholar
Cubbage F, Donagh PM, Balmelli G, Olmos VM, Bussoni A, Rubilar R, De La Torre R, Lord R, Huang J, Hoeflich VA, Murara M, Kanieski B, Hall P, Yao R, Adams P, Kotze H, Monges E, Pérez CH, Wikle J, Abt R, Gonzalez R, Carrero O (2014)
Global timber investments and trends, 2005-2011. New Zealand Journal of Forestry Science 44: 1-12.
CrossRef | Gscholar
De Olivera FLP, Lemme CF, Leal RPC (2011)
Cost of equity capital and additionality of Brazilian renewable energy projects under the clean development mechanism. Latin American Business Review 12: 233-253.
CrossRef | Gscholar
Díaz L (2002)
Los sistemas forestales y la provisión de bienes ambientales [Forest systems and the provision of environmental goods]. In: Jornada Temática “Aspectos Medioambientales de la Agricultura”. Libro Blanco de Agricultura, Madrid, Spain, pp. 12. [in Spanish]
Dlugokencky E, Tans P (2018)
Trends in atmospheric carbon dioxide. National Oceanic and Atmospheric Administration, Earth System Research Laboratory - NOAA/ESRL, Boulder, Colorado, USA, Web Site.
Online | Gscholar
Fang Z, Borders BE, Bailey RL (2000)
Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science 46: 1-12.
Online | Gscholar
Figueroa C, Angeles G, Velázquez A, De los Santos HM (2010)
Estimación de la biomasa en un bosque bajo manejo de Pinus patula Schltdl. et Cham. en Zacualtipán, Hidalgo [Biomass estimation in a managed Pinus patula Schltdl. et Cham. forest at Zacualtipan, Hidalgo state]. Revista Mexicana de Ciencias Forestales 106: 105-112. [in Spanish]
Foley T (2009)
Extending forest rotation age for carbon sequestration: a cross-protocol comparison of carbon offsets of North American forests. Masters Project, Nicholas School of the Environment, Duke University, Durham, NC, USA, pp. 51.
Fonseca W, Villalobos R, Rojas M (2019)
Potencial de mitigación del cambio climático de los ecosistemas forestales caducifolios en Costa Rica: modelos predictivos de biomasa y carbono [Potential mitigation of climate change of deciduous forest ecosystems in Costa Rica: predictive models of biomass and carbon]. Revista de Ciencias Ambientales 53: 111-131. [In Spanish]
CrossRef | Gscholar
Gutrich J, Howarth R (2007)
Carbon sequestration and the optimal management of New Hampshire timber stands. Ecological Economics 62: 441-450.
CrossRef | Gscholar
INEGI (2018)
Sistema de cuentas nacionales de México año base 2013 [System of national accounts of Mexico base year 2013]. Instituto Nacional de Estadística Geográfica e Informática, DF, México, pp. 593. [in Spanish]
IPCC (2013)
Glossary. In: “Climate change 2013. Physical bases. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Group of Experts on Climate Change” (Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds). Cambridge University Press, Cambridge, UK, pp. 185-204
Joos F, Spahni R (2008)
Rates of change in natural and anthropogenic radiative forcing over the past 20.000 years. Proceedings of the National Academy of Sciences USA 105: 1425-1430.
CrossRef | Gscholar
Keles S (2017)
Determining optimum cutting ages including timber production and carbon sequestration benefits in Turkish pine plantations. Sains Malaysiana 46: 381-386.
CrossRef | Gscholar
Klemperer WD (1996)
Forest resource economics and finance. McGraw Hill, New York, USA, pp. 551.
Online | Gscholar
Köthke M, Dieter M (2010)
Effects of carbon sequestration rewards on forest management - an empirical application of adjusted Faustmann formulae. Forest Policy and Economics 12: 589-597.
CrossRef | Gscholar
Lobos A, Vallejos GO, Caroca C, Marchant C (2005)
El mercado de los bonos de carbono (“bonos verdes”): una revisión [The carbon credit market (“green bonds”): a review]. Revista Interamericana de Ambiente y Turismo 1: 42-52. [in Spanish]
Online | Gscholar
Locatelli B, Evans V, Wardell A, Andrade A, Vignola R (2011)
Forests and climate change in Latin America: linking adaptation and mitigation. Forests 2: 431-450.
CrossRef | Gscholar
López L, Domínguez M, Martínez P, Zavala J, Gómez A, Posada S (2016)
Carbono almacenado en la biomasa aérea de plantaciones de hule (Hevea brasiliensis Müell. Arg.) de diferentes edades [Stored carbon in the aboveground biomass of rubber (Hevea brasiliensis Müell. Arg.) plantations at different ages]. Madera y Bosques 22: 49-60. [in Spanish]
CrossRef | Gscholar
Masera O, Bellon MR, Segura G (1997)
Forestry options for sequestering carbon in Mexico: comparative economic analysis of three case studies. Critical Reviews in Environmental Science and Technology 27: 227-244.
CrossRef | Gscholar
Mead JD (2005)
Opportunities for improving plantation productivity. How much? How quickly? How realistic? Biomass and Bioenergy 28: 249-266.
CrossRef | Gscholar
Müller U, Rodríguez R, Gajardo P (2013)
Desarrollo de una guía de manejo de la densidad en bosques de segundo crecimiento de roble (Nothofagus obliqua) en la región del Biobío [Stand density management diagrams for roble (Nothofagus obliqua) in the Biobío Region, Chile]. Bosque 34: 201-209. [in Spanish]
CrossRef | Gscholar
Musálem LF (1979)
Las bases y primeras acciones del programa nacional de mejoramiento silvícola en bosques de coníferas [The bases and first actions of the national silvicultural improvement program in coniferous forests]. SAG-SFF, DF, México, pp. 102. [in Spanish]
Nepal P, Grala R, Grebner D (2012)
Financial feasibility of increasing carbon sequestration in harvested wood products in Mississippi. Forest Policy and Economics 14: 99-106.
CrossRef | Gscholar
Palacios DJ, De los Santos HM, Angeles G, Fierros AM, Santiago W (2020)
Sistema de crecimiento y rendimiento para evaluar sumideros de carbono en bosques de Pinus patula Schiede ex Schltdl. et Cham. bajo aprovechamiento forestal [Growth and yield system to evaluate carbon sinks in managed Pinus patula Schiede ex Schltdl. et Cham. forests]. Agrociencia 54: 241-257. [in Spanish]
Online | Gscholar
Patel T, Dhiaulhaq A, Gritten D, Yasmi Y, Bruyn TD, Paudel NS, Suzuki R (2013)
Predicting future conflict under REDD+ implementation. Forests 4: 343-363.
CrossRef | Gscholar
Phelps J, Guerrero M, Dalabajan D, Young B, Webb E (2010)
What makes a “REDD” country? Global Environmental Change 20: 322-332.
CrossRef | Gscholar
Ramírez A, De los Santos HM, Angeles G, González MJ, Santiago W (2020)
Densidad inicial en el rendimiento maderable y biomasa de Pinus patula con especies latifoliadas [Initial density in the timber yield and biomass of Pinus patula with hardwood species]. Agrociencia 54: 555-573. [in Spanish]
CrossRef | Gscholar
Reyes JA, Gómez JP, Osaland R, Zavala R (2012)
Potencial de servicios ambientales en la propiedad social en México [Potential of environmental services in social property in Mexico]. Instituto Interamericano de Cooperación para la Agricultural, Secretaría de la Reforma Agraria, México, pp. 103. [In Spanish]
Rodríguez L, Guevara F, Reyes L, Ovando J, Nahed J, Prado M, Campos R (2016)
Estimación de biomasa y carbono almacenado en bosques comunitarios de la región Frailesca de Chiapas, México [Estimation of the biomass and stored carbon in community forest of La Frailesca region of Chiapas, Mexico]. Revista Mexicana de Ciencias Forestales 7: 77-94. [In Spanish]
CrossRef | Gscholar
Romero C, Ríos V, Díaz L (1998)
Optimal forest rotation age when carbon captured is considered: theory and applications. Journal of the Operational Research Society 49: 121-131.
CrossRef | Gscholar
Sabogal J, Moreno E, Ortega GA (2009)
Procesos de certificación de proyectos de captura de gases de efecto invernadero (GEI) En los Mercados Internacionales de Carbono [Certification processes for greenhouse gas (GHG) capture projects in the International Carbon Markets]. Gestión y Ambiente 12: 07-20. [In Spanish]
Online | Gscholar
Santiago W, De los Santos HM, Angeles G, Valdez JR, Del Valle DH, Corral JJ (2013)
Self-thinning and density management diagrams for Pinus patula fitted under the stochastic frontier regression approach. Agrociencia 47: 75-89.
Online | Gscholar
Santiago W, De Los Santos HM, Angeles G, Corral JJ, Valdez JR, Del Valle DH (2014)
Prediction of Pinus patula Schl. et Cham. timber yield through diameter distribution models. Agrociencia 48: 87-101.
Online | Gscholar
Sauter PA, Mußhoff O (2018)
What is your discount rate? Experimental evidence of foresters’ risk and time preferences. Annals of Forest Science 75 (1): 239.
CrossRef | Gscholar
Schwartz N, Aide T, Graesser J, Grau H, Uriarte M (2020)
Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Frontiers in Forests and Global Change 3: 85.
CrossRef | Gscholar
Stern N (2007)
The economics of climate change: the Stern Review. Cambridge University Press, Cambridge, UK, pp. 662.
CrossRef | Gscholar
Telles E, González MJ, De los Santos HM, Fierros AM, Lilieholm RJ, Gómez A (2008)
Rotación óptima en plantaciones de eucalipto al incluir ingresos por captura de carbono en Oaxaca, México [Optimal timber rotation lenghts in eucalyptus plantations including revenues from carbon capture in Oaxaca, Mexico]. Revista Fitotecnia Mexicana 31: 173-182. [in Spanish]
CrossRef | Gscholar
Torres JM (2015)
Desarrollo forestal comunitario: la política pública [Community forestry development: public policy]. Cide, DF, México, pp. 238. [in Spanish]
Online | Gscholar
Torres JM, Moreno R, Mendoza MA (2016)
Sustainable forest management in Mexico. Current Forestry Reports 2: 93-105.
CrossRef | Gscholar
UNFCCC (2015)
París agreement. United Nations Framework Convention on Climate Change, United Nations, Paris, France, pp. 40. [in Spanish]
Online | Gscholar
Vargas B, Corral JJ, Aguirre OA, López JO, De Los Santos HM, Zamudio FJ, Treviño EJ, Martínez M, Aguirre CG (2017)
SiBiFor: forest biometric system for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 23: 437-455.
CrossRef | Gscholar
Zomer R, Trabucco A, Bossio D, Verchot L (2008)
Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems and Environment 126: 67-80.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info