iForest - Biogeosciences and Forestry


Mid-rotation fertilization and liming of Pinus taeda: growth, litter, fine root mass, and elemental composition

William Magrim Adam (1), Valdécio Dos Santos Rodrigues (2)   , Ederlan Magri (2), Antônio Carlos Vargas Motta (2), Stephen A Prior (3), Leandro Moraes Zambon (4), Rubia Luciane Dominschek Lima (2)

iForest - Biogeosciences and Forestry, Volume 14, Issue 2, Pages 195-202 (2021)
doi: https://doi.org/10.3832/ifor3626-014
Published: Apr 24, 2021 - Copyright © 2021 SISEF

Research Articles

Forest floor litter can influence biogeochemical cycling and root growth in Pinus taeda systems, especially on low soil fertility sites. The impact of fertilization and liming on forest floor litter (quantity, elemental composition and root presence) was evaluated in a Pinus taeda stand in southern Brazil. A nutrient omission experiment was initiated in November 2008 on an 11 year-old Pinus taeda plantation. The experiment was a randomized block design with seven treatments and four blocks. The treatments were: complete (macro + micro + lime); minus macronutrients; minus micronutrients; minus K; minus Zn; minus lime; and control. In 2012, forest floor litter samples were collected, divided by layer (new litter, old litter, coarse fragmented forest layer > 2mm, fine fragment forest floor < 2mm, and fine roots) and analyzed for concentrations of Na, Al, and total nutrients. Results indicated that lime increased Ca and Mg concentrations, reduced Al toxicity, and improved fine root growth. An increase in fine roots was observed in treatments without K. There were large increases in Fe and Al as a function of litter age and increased Mn in fragmented litter when lime was applied. There was little variation in forest floor litter accumulation in all treatments. Elemental abundance was C>N>Fe>P>Ca>K>Mg>Mn under control conditions and C>N>Ca>Mg>P>Fe>Mn>K for the complete treatment. Occurrence of needle chlorosis, similar to that reported for Mg, and low growth under lime omission indicate that Mg was a major factor limiting growth. Fertilization and liming affected the bio-cycling of nutrients, Al toxicity, and root growth.


Nutrient Concentration, Litter, Ca:Al Ratio, Forest Management

Authors’ address

William Magrim Adam
Epagri - Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Florianopolis, SC (Brazil)
Valdécio Dos Santos Rodrigues 0000-0001-5344-2150
Ederlan Magri 0000-0001-5046-4653
Antônio Carlos Vargas Motta 0000-0001-9117-1881
Rubia Luciane Dominschek Lima 0000-0002-4240-0147
Department of Soils and Agricultural Engineering, Federal University of Paraná, 1540 Funcionários St., Curitiba, PR (Brazil)
Stephen A Prior
USDA-ARS National Soil Dynamics Laboratory, Auburn, Alabama (USA)
Leandro Moraes Zambon 0000-0002-7760-4289
University of São Paulo, Piracicaba, SP (Brazil)

Corresponding author

Valdécio Dos Santos Rodrigues


Adam WM, Rodrigues VDS, Magri E, Motta ACV, Prior SA, Moraes Zambon L, Lima RLD (2021). Mid-rotation fertilization and liming of Pinus taeda: growth, litter, fine root mass, and elemental composition. iForest 14: 195-202. - doi: 10.3832/ifor3626-014

Academic Editor

Gianfranco Minotta

Paper history

Received: Aug 14, 2020
Accepted: Feb 18, 2021

First online: Apr 24, 2021
Publication Date: Apr 30, 2021
Publication Time: 2.17 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 5073
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 2671
Abstract Page Views: 303
PDF Downloads: 1739
Citation/Reference Downloads: 1
XML Downloads: 359

Web Metrics
Days since publication: 1148
Overall contacts: 5073
Avg. contacts per week: 30.93

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Albaugh TJ, Allen HL, Dougherty PM, Kress LW, King JS (1998)
Leaf area and above-and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science 44 (2): 317-328.
Online | Gscholar
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013)
Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711-728.
CrossRef | Gscholar
Alves MJF, Melo VF, Reissmann CB, Kaseker JF (2013)
Reserva mineral de potássio em Latossolo cultivado com Pinus taeda L. [Mineral potassium reserve in an Oxisol cultivated with Pinus taeda L.]. Revista Brasileira de Ciência do Solo 37: 1599-1610. [in Portuguese]
CrossRef | Gscholar
Babel U (1972)
Moderprofile in Wäldern - Morphologie und Umsetzungsprozesse [Moder profiles in forests - Morphology and implementation processes]. Hohenheimer Arbeiten 60, Ulmer, Stuttgart, Germany, pp. 120. [in German]
Bakker MR (1999)
Fine roots parameters as sustainability of forest ecosystems. Forest Ecology and Management 122: 7-16.
CrossRef | Gscholar
Bakker MR, Jolicoeur E, Trichet P, Augusto L, Plassar DC, Guinberteau J, Loustau D (2009)
Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiology 29 (2): 229-238.
CrossRef | Gscholar
Batista AH, Motta ACV, Reissmann CB, Schneider T, Martins IL, Hashimoto M (2015)
Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in savanna soils. Acta Scientiarum Agronomy 37 (1): 117-125.
CrossRef | Gscholar
Bauhus J, Bartsch N, Cowling N (2004)
The effects of gaps and liming on forest floor decomposition and soil C and N dynamics in a Fagus sylvatica forest. Canadian Journal of Forest Research 34 (3): 509-518.
CrossRef | Gscholar
Berg B, Davey MP, Marco A, Emmett B, Faituri M, Hobbie SE, Rutigliano FA (2010)
Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100 (1-3): 57-73.
CrossRef | Gscholar
Bizon JMC (2005)
Avaliação da sustentabilidade nutricional de plantios de Pinus taeda L. usando um balanço de entrada e saída de nutrientes [Assessment of the nutritional sustainability of Pinus taeda L. plantations using a nutrient input and output balance]. Dissertação de mestrado, Escola Superior de Agricultura “Luiz de Queiroz”, USP, Piracicaba, Brazil, pp. 96. [in Portuguese]
Carlson CA, Fox TR, Allen HL, Albaugh TJ, Rubilar RA, Stape JL (2013)
Growth responses of loblolly pine in the southeast united states to midrotation applications of nitrogen, phosphorus, potassium, and micronutrients. Forest Science 60 (1): 157-169.
CrossRef | Gscholar
Consalter R, Barbosa JZ, Prior SA, Vezzani FM, Bassaco MVM, Pedreira GQ, Motta ACV (2020)
Mid-rotation fertilization and liming effects on nutrient dynamics of Pinus taeda L. in subtropical Brazil. European Journal of Forest Research 140 (1): 19-35.
CrossRef | Gscholar
Donagema GK, Campos DB, Calderano SB, Teixeira WG, Viana JM (2011)
Manual de métodos de análise de solo [Manual of soil analysis methods]. Embrapa Solos-Documentos (INFOTECA-E), Rio de Janeiro, Brazil, pp. 230. [in Portuguese]
Epstein E, Bloom AJ (2005)
Mineral nutrition of plants: principles and perspectives. Sinauer Associates, Sunderland, MS, USA, pp. 400.
Huber C, Baier R, Göttlein A, Weis W (2006)
Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald, Germany. Forest Ecology and Management 233 (1): 11-20.
CrossRef | Gscholar
Huntington TG (2000)
The potential for calcium depletion in forest ecosystems of southeastern United States: review and analysis. Global Biogeochemical Cycles 14 (2): 623-638.
CrossRef | Gscholar
Ingerslev M (1997)
Effects of liming and fertilization on growth, soil chemistry and soil water chemistry in a Norway spruce plantation on a nutrient-poor soil in Denmark. Forest Ecology Management 92 (1-3): 55-66.
CrossRef | Gscholar
Jandl R, Kopeszki H, Bruckner A, Hager H (2003)
Forest soil chemistry and mesofauna 20 years after an amelioration fertilization. Restoration Ecology 11 (2): 239-246.
CrossRef | Gscholar
Kendorff H, Schnitzer M (1980)
Sorption of metals on humic acid. Geochimica and Cosmochimica Acta 44: 1701-1708.
CrossRef | Gscholar
Kiser IC, Fox TR, Carlson CA (2013)
Foliage and Litter Chemistry, Decomposition, and Nutrient Release in Pinus taeda. Forests 4 (3): 595-612.
CrossRef | Gscholar
Lehto T (1994)
Effects of liming and boron fertilization on boron uptake of Picea abies. Plant and Soil 163 (1): 55-64.
CrossRef | Gscholar
Lopes VG, Schumacher MV, Calil FN, Vieira M, Witschoreck R (2010)
Fine roots quantification in Pinus taeda L. stand and grassland area in Cambará do Sul (RS). Ciência Florestal 20 (4): 569-578.
CrossRef | Gscholar
Marques R, Motta ACV (2003)
Análise química do solo para fins de fertilidade [Chemical soil analysis for fertility purposes]. In: “Manual de Diagnóstico da Fertilidade e Manejo dos Solos Agrícolas” (De Lima MR ed). Departamento de Solos e Engenharia Agrícola, Curitiba, Brazil, pp. 81-102. [in Portuguese]
Marschner B, Wilczynski A (1991)
The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant and Soil 137 (2): 229-236.
CrossRef | Gscholar
Martins APL, Reissmann CB (2007)
Material vegetal e as rotinas laboratoriais nos procedimentos químico-analíticos [Plant material and laboratory routines in chemical-analytical procedures]. Scientia Agraria 8 (1): 1-17.
CrossRef | Gscholar
Martins IL (2011)
Análise nutricional do P em um povoamento de Pinus taeda L. submetido a um ensaio de omissão de nutrientes. [Nutritional analysis of P in a stand of Pinus taeda L. submitted to a nutrient omission test]. Dissertação de Mestrado, Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, PR, Brazil, pp. 96. [in Portuguese]
Matzner E, Khanna PK, Meiwes KJ, Ulrich B (1985)
Effects of fertilization and liming on the chemical soil conditions and element distribution in forest soils. Plant and Soil 87 (3): 405-415.
CrossRef | Gscholar
Moro L (2017)
Produtividade, ciclagem de nutrientes e índices do sistema dris em plantios de pinus submetidos à adubação NPK em três idades [Productivity, nutrient cycling and indexes of the dris system in pine plantations submitted to NPK fertilization at three ages]. Tese de Doutorado, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil, pp. 93. [in Portuguese]
Motta ACV, Barbosa JZ, Consalter R, Reissmann CB (2014)
Nutrição e Adubação da Cultura de Pínus [Pine Crop Nutrition and Fertilization]. In: “Nutrição e Adubação de Espécies Florestais e Palmeiras” (Prado, RM, Wadt PGS eds). Jaboticabal, FUNEP, São Paulo, Brazil, pp. 383-426. [in Portuguese]
Persson T, Rudebeck A, Wiren A (1995)
Pools and fluxes of carbon and nitrogen in 40-year-old forest liming experiments in southern Sweden. Water, Air, and Soil Pollution 85 (2): 901-906.
CrossRef | Gscholar
Piatek KB, Allen HL (2001)
Are forest floors in mid-rotation stands of loblolly pine (Pinus taeda) a sink for nitrogen and phosphorus? Canadian Journal of Forest Research 31 (7): 1164-1174.
CrossRef | Gscholar
Piovesan G, Schumacher MV, Viera M, Lopes VG, Welter C (2012)
Deposição de serapilheira em povoamento de pinus [Litterfall deposition in a pine stand]. Pesquisa Agropecuária Tropical 42: 206-211. [in Portuguese]
CrossRef | Gscholar
Prado RM (2008)
Nutrição de plantas [Plant nutrition]. UNESP, São Paulo, Brazil, pp. 507. [in Portuguese]
Prescott CE, Corbin JP, Parkinson D (1992)
Immobilization and availability of N and P in the forest floors of fertilized Rocky Mountain coniferous forests. Plant and Soil 143: 1-10.
CrossRef | Gscholar
Prescott CE (1995)
Does nitrogen availability control rates of litter decomposition in forests? Plant and Soil 168: 83-88.
CrossRef | Gscholar
Prietzel J, Rehfuess KE, Stetter U, Pretzsch H (2008)
Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine (Pinus sylvestris L.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction. European Journal of Forest Research 127 (1): 43-61.
CrossRef | Gscholar
Rabel DO, Maeda S, Araujo EM, Gomes JB, Bognolla IA, Prior SA, Magri E, Frigo C, Brasileiro BP, Santos MC, Pedreira GQ, Motta ACV (2020)
Recycled alkaline paper waste influenced growth and structure of Pinus taeda L. forest. New Forests 51: 1-22.
CrossRef | Gscholar
Rizvi SH, Gauquelin T, Gers C, Guérold F, Pagnout C, Baldy V (2012)
Calcium-magnesium liming of acidified forested catchments: effects on humus morphology and functioning. Applied Soil Ecology 62: 81-87.
CrossRef | Gscholar
Rodrigues ANA, Motta ACV, Goularte GD, Prior SA (2018)
Forms and buffering potential of aluminum in tropical and subtropical acid soils cultivated with Pinus taeda L. Journal of Soils and Sediments 19 (3): 1355-1366.
CrossRef | Gscholar
Rosberg I, Frank J, Stuanes AO (2006)
Effects of liming and fertilization on tree growth and nutrient cycling in a Scots pine ecosystem in Norway. Forest Ecology and Management 237 (1-3): 191-207.
CrossRef | Gscholar
Samuelson LJ, Johnsen K, Stokes T (2004)
Production, allocation, and stemwood growth efficiency of Pinus taeda L. stands in response to 6 years of intensive management. Forest Ecology and Management 192 (1): 59-70.
CrossRef | Gscholar
Sanchez FG (2001)
Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. Forest Ecology and Management 152 (1-3): 85-96.
CrossRef | Gscholar
Sayer EJ, Tanner EVJ, Cheesman AW (2006)
Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil 281 (1-2): 5-13.
CrossRef | Gscholar
Sayer EJ, Wright SJ, Tanner EVJ, Yavitt JB, Harms KE, Powers JS, Kaspari M, Garcia MN, Tuner BL (2012)
Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15 (3): 387-400.
CrossRef | Gscholar
Schumacher MV, Viera M, Witschoreck R (2008)
Produção de serapilheira e transferência de nutrientes em área de segunda rotação com floresta de Pinus taeda L. no município de Cambará do Sul, RS. [Litter production and nutrients transfer in a second rotation area with Pinus taeda L. forest in Cambará do Sul, RS]. Ciência Florestal 18 (4): 471-480. [in Portuguese]
CrossRef | Gscholar
Sun OJ, Payn TW (1999)
Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiology 19: 535-540.
CrossRef | Gscholar
Trevisan E (1992)
Classificação e caracterização de horizontes orgnicos sob povoamentos de Pinus taeda L. na região de Ponta Grossa - PR [Classification and characterization of organic horizons under stands of Pinus taeda L. in the region of Ponta Grossa - PR]. Dissertação de Mestrado, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, Brazil, pp. 106. [in Portuguese]
Vangelova EI, Hirano Y, Eldhuset TD, Sas-paszt L, Bakker MR, Püttsepp U, Brunner I, Lõhmus K, Godbold D (2007)
Tree fine roots Ca/Al molar ratio - Indicator of Al and acidity stress. Plant Biosystems 141 (3): 460-480.
CrossRef | Gscholar
Vieira M, Schumacher MV (2009)
Concentração e retranslocação de nutrientes em acículas de Pinus taeda L. [Concentration and retranslocation of nutrients in Pinus taeda L.] Ciência Florestal 19 (4): 375-382. [in Portuguese]
CrossRef | Gscholar
Vogel JG, He D, Jokela EJ, Hockaday W, Schuur EAG (2015)
The effect of fertilization levels and genetic deployment on the isotopic signature, constituents, and chemistry of soil organic carbon in managed loblolly pine (Pinus taeda L.) forests. Forest Ecology and Management 355: 91-100.
CrossRef | Gscholar
Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ (2011)
Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology 36 (4): 433-445.
CrossRef | Gscholar
Will GM (1978)
Nutrient deficiencies in Pinus radiata in New Zealand. New Zealand Journal of Forestry Science 8 (1): 4-14.
Online | Gscholar
Zhang D, Hui D, Luo Y, Zhou G (2008)
Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1 (2): 85-93.
CrossRef | Gscholar
Zinn YL, Resck DVS, Silva JE (2002)
Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. Forest Ecology and Management 166 (1/3): 285-294.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info