*
 

iForest - Biogeosciences and Forestry

*

Determination of differences in temperature regimes on healthy and bark-beetle colonised spruce trees using a handheld thermal camera

Andrej Majdák (1)   , Rastislav Jakuš (1-2), Miroslav Blaženec (1)

iForest - Biogeosciences and Forestry, Volume 14, Issue 3, Pages 203-211 (2021)
doi: https://doi.org/10.3832/ifor3531-014
Published: May 02, 2021 - Copyright © 2021 SISEF

Research Articles


In this study, we compared the daily temperature regimes of healthy uninfected trees in the interior of a forest stand and at the fresh forest edge with infested trees at the forest edge in an area affected by a bark beetle outbreak. We estimated the potential of a handheld thermal camera for early identification of bark-beetle infested trees. We show that infested trees have significantly higher trunk temperatures than uninfested trees, which is more visible on the shine side of the trunk, and we report the differences in temperature between the shine and shadow sides. The differences are more noticeable on a warm, bright, and sunny day than on cold and cloudy day. The different intensity of solar radiation does not affect the distinction between infested and uninfested trees. The handheld thermal camera shows potential for identifying bark-beetle infested trees by scanning tree trunks on bright sunny days.

  Keywords


Bark-beetle Infested Trees, Handheld Thermal Camera, Incoming Solar Radiation, Norway Spruce, Solar Radiation Modelling, Temperature Differences

Authors’ address

(1)
Andrej Majdák 0000-0002-7688-8152
Rastislav Jakuš 0000-0003-2280-1952
Miroslav Blaženec 0000-0001-9743-614X
Institute of Forest Ecology, Slovak Academy of Sciences, Ludovíta Štúra 2, 960 53 Zvolen (Slovak Republic)
(2)
Rastislav Jakuš 0000-0003-2280-1952
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 1176, 165 21 Praha 6 - Suchdol (Czech Republic)

Corresponding author

 
Andrej Majdák
andrej.majdak@gmail.com

Citation

Majdák A, Jakuš R, Blaženec M (2021). Determination of differences in temperature regimes on healthy and bark-beetle colonised spruce trees using a handheld thermal camera. iForest 14: 203-211. - doi: 10.3832/ifor3531-014

Academic Editor

Carlotta Ferrara

Paper history

Received: May 21, 2020
Accepted: Feb 23, 2021

First online: May 02, 2021
Publication Date: Jun 30, 2021
Publication Time: 2.27 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 4560
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 2506
Abstract Page Views: 305
PDF Downloads: 1536
Citation/Reference Downloads: 4
XML Downloads: 209

Web Metrics
Days since publication: 1233
Overall contacts: 4560
Avg. contacts per week: 25.89

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Abdullah H, Darvishzadeh R, Skidmore AK, Groen TA, Heurich M (2018)
European spruce bark beetle (Ips typographus L.) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation 64: 199-209.
CrossRef | Gscholar
(2)
Annila E (1969)
Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytidae). Annales Zoologici Fennici 6: 161-208.
Gscholar
(3)
Baier P, Bader R (1997)
Gehalt und Emission von Monoterpenen der Fichtenrinde und deren Bedeutung für die Primärattraktion von Borkenkäfern (Coleoptera, Scolytidae). [Monoterpene content and monoterpene emission of Norway spruce bark and their relation to the primary attraction of bark beetles (Coleoptera, Scolytidae)]. Mitteilungen Der Deutschen Gesellschaft für Allgemeine fnd Angewandte Entomologie 11: 639-643. [in German]
Gscholar
(4)
Buitrago MF, Groen TA, Hecker CA, Skidmore AK (2016)
Changes in thermal infrared spectra of plants caused by temperature and water stress. ISPRS Journal of Photogrammetry and Remote Sensing 111: 22-31.
CrossRef | Gscholar
(5)
Costa JM, Grant OM, Chaves MM (2013)
Thermography to explore plant-environment interactions. Journal of Experimental Botany 64: 3937-3949.
CrossRef | Gscholar
(6)
Golomb O, Alchanatis V, Cohen Y, Levin N, Cohen Y, Soroker V (2015)
Detection of red palm weevil infected trees using thermal imaging. In: Proceedings of the “10th European Conference on Precision Agriculture, ECPA 2015”. Wageningen Academic Publishers, Wageningen, Netherlands, pp. 643-650.
CrossRef | Gscholar
(7)
Hall RJ, Castilla G, White JC, Cooke BJ, Skakun RS (2016)
Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective. Canadian Entomologist 148: 296-356.
CrossRef | Gscholar
(8)
Helliker BR, Richter SL (2008)
Subtropical to boreal convergence of tree-leaf temperatures. Nature 454: 511-514.
CrossRef | Gscholar
(9)
Hietz P, Baier P, Offenthaler I, Führer E, Rosner S, Richter H (2005)
Tree temperatures, volatile organic emissions, and primary attraction of bark beetles. Phyton - Annales Rei Botanicae 45: 341-354.
Online | Gscholar
(10)
Hubbard RM, Rhoades CC, Elder K, Negron J (2013)
Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling. Forest Ecology and Management 289: 312-317.
CrossRef | Gscholar
(11)
IUSS Working Group WRB (2014)
World reference base for soil resources 2014. World Soil Resources Reports no. 106, FAO, Rome, Italy, pp. 192.
Gscholar
(12)
Jakuš R, Edwards-Jonášová M, Cudlín P, Blaenec M, Jeík M, Havlíček F, Moravec I (2011)
Characteristics of Norway spruce trees (Picea abies) surviving a spruce bark beetle (Ips typographus L.) outbreak. Trees - Structure and Function 25: 965-973.
CrossRef | Gscholar
(13)
Jones HG (2004)
Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Advances in Botanical Research 41: 107-163.
CrossRef | Gscholar
(14)
Junttila S, Vastaranta M, Hämäläinen J, Latva-Käyrä P, Holopainen M, Hernández Clemente R, Hyyppä H, Navarro-Cerrillo RM (2017)
Effect of forest structure and health on the relative surface temperature captured by airborne thermal imagery - Case study in Norway Spruce-dominated stands in Southern Finland. Scandinavian Journal of Forest Research 32: 154-165.
CrossRef | Gscholar
(15)
Karasev VN, Karaseva MA, Romanov EM, Mukhortov DI (2017)
Rapid thermal method for early diagnosis of the physiological state of Scots pine trees. Russian Journal of Ecology 48: 109-115.
CrossRef | Gscholar
(16)
Kautz M, Schopf R, Ohser J (2013)
The “sun-effect”: microclimatic alterations predispose forest edges to bark beetle infestations. European Journal of Forest Research 132: 453-465.
CrossRef | Gscholar
(17)
Kirisits T, Offenthaler I (2002)
Xylem sap flow of Norway spruce after inoculation with the blue-stain fungus Ceratocystis polonica. Plant Pathology 51: 359-364.
CrossRef | Gscholar
(18)
Lapin M, Faško P, Melo M, Stastny P, Tomlain J (2002)
Climatic regions 1:1.000.000. In: “Landscape Atlas of the Slovak Republic” (Hrnčiarová T ed). Ministry of Environment of the Slovak Republic, Bratislava, and Slovak Environment Agency, Banská Bystrica, Slovak Republic, pp. 344.
Gscholar
(19)
Latifi H, Fassnacht FE, Schumann B, Dech S (2014)
Object-based extraction of bark beetle (Ips typographus L.) infestations using multi-date LANDSAT and SPOT satellite imagery. Progress in Physical Geography 38: 755-785.
CrossRef | Gscholar
(20)
Lausch A, Erasmi S, King DJ, Magdon P, Heurich M (2016)
Understanding forest health with remote sensing. Part I - A review of spectral traits, processes and remote-sensing characteristics. Remote Sensing 8: 1029.
CrossRef | Gscholar
(21)
Lausch A, Erasmi S, King DJ, Magdon P, Heurich M (2017)
Understanding forest health with remote sensing. Part II - A review of approaches and data models. Remote Sensing 9: 129.
CrossRef | Gscholar
(22)
Leuzinger S, Körner C (2007)
Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agricultural and Forest Meteorology 146: 29-37.
CrossRef | Gscholar
(23)
Marešová J, Majdák A, Jakuš R, Hradecky J, Kalinová B, Blazenec M (2020)
The short-term effect of sudden gap creation on tree temperature and volatile composition profiles in a Norway spruce stand. Trees - Structure and Function 34: 1397-1409.
CrossRef | Gscholar
(24)
Mezei P, Jakuš R, Pennerstorfer J, Havašová M, Skvarenina J, Ferenčík J, Slivinsky J, Bičárová S, Bilčík D, Blazenec M, Netherer S (2017)
Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus. An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology 242: 85-95.
CrossRef | Gscholar
(25)
Näsi R, Honkavaara E, Blomqvist M, Lyytikäinen-Saarenmaa P, Hakala T, Viljanen N, Kantola T, Holopainen M (2018)
Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban Forestry and Urban Greening 30: 72-83.
CrossRef | Gscholar
(26)
Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanpää T, Holopainen M (2015)
Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sensing 7: 15467-15493.
CrossRef | Gscholar
(27)
Nicolai V (1986)
The bark of trees: thermal properties, microclimate and fauna. Oecologia 69: 148-160.
CrossRef | Gscholar
(28)
Paine TD, Raffa KF, Harrington TC (1997)
Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology 42: 179-206.
CrossRef | Gscholar
(29)
Powell JM (1967)
A study of habitat temperatures of the bark beetle Dendroctonus ponderosae Hopkins in lodgepole pine. Agricultural Meteorology 4: 189-201.
CrossRef | Gscholar
(30)
Reinert S, Bögelein R, Thomas FM (2012)
Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica). Tree Physiology 32: 294-302.
CrossRef | Gscholar
(31)
Senf C, Seidl R, Hostert P (2017)
Remote sensing of forest insect disturbances: current state and future directions. International Journal of Applied Earth Observation and Geoinformation 60: 49-60.
CrossRef | Gscholar
(32)
Scherrer D, Bader MKF, Körner C (2011)
Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agricultural and Forest Meteorology 151: 1632-1640.
CrossRef | Gscholar
(33)
Smigaj M, Gaulton R, Barr SL, Suárez JC (2015)
UAV-Borne thermal imaging for forest health monitoring: Detection Of disease-induced canopy temperature increase. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 40: 349-354.
CrossRef | Gscholar
(34)
Stadt KJ, Lieffers VJ (2000)
MIXLIGHT: A flexible light transmission model for mixed-species forest stands. Agricultural and Forest Meteorology 102: 235-252.
CrossRef | Gscholar
(35)
Wermelinger B (2004)
Ecology and management of the spruce bark beetle Ips typographus - A review of recent research. Forest Ecology and Management 202: 67-82.
CrossRef | Gscholar
(36)
Wullschleger SD, McLaughlin SB, Ayres MP (2004)
High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle. Canadian Journal of Forest Research 34: 2387-2393.
CrossRef | Gscholar
(37)
Zumr V (1985)
Biologie a ekologie lýkožrouta smrkového (Ips typographus) a ochrana proti nemu [Biology and ecology of the spruce bark beetle (Ips typographus) and its control]. ACADEMIA, nakladatelství CSAV, Praha, Czech Republic, pp. 124.
Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info