*
 

iForest - Biogeosciences and Forestry

*

Conservation of Betula oycoviensis, an endangered rare taxon, using vegetative propagation methods

Jan Vítámvás (1)   , Ivan Kuneš (1), Iva Viehmannová (2), Rostislav Linda (1), Martin Baláš (1)

iForest - Biogeosciences and Forestry, Volume 13, Issue 2, Pages 107-113 (2020)
doi: https://doi.org/10.3832/ifor3243-013
Published: Mar 23, 2020 - Copyright © 2020 SISEF

Research Articles


Ojcow birch (Betula oycoviensis Besser) is a rare Central European tree taxon, micro-populations of which are found in only several localities. With a view to maintaining the B. oycoviensis gene pool, this study tested the species’ potential for micropropagation, grafting, and propagation by cuttings. Plant material for vegetative propagation was collected from ten genotypes in the Czech Republic. In vitro culture was established from axillary buds surfaces sterilized with 0.1% HgCl2 and cultivated on woody plant (WP) medium supplemented with 1 mg l-1 6-benzylaminopurine (BAP). Two genotypes of the species were successfully multiplied by in vitro propagation using WP medium supplemented with 0-2 mg l-1 BAP. The BAP concentration of 1 mg l-1 proved to be optimal, yielding 2.5 new shoots per explant in genotype 516 and 3.5 shoots per explant in genotype 545. The shoots were rooted on half-strength Murashige and Skoog (MS) medium supplemented with various concentrations of α-naphthylacetic acid (NAA) and indole-3-butyric acid (IBA). The highest rooting percentages (72.5% and 77.5% for genotypes 516 and 545, respectively) were achieved on the medium with the combination of both auxins at concentrations of 0.3 mg l-1. The rooted plants were transferred ex vitro in substrate composed of sand, peat, and perlite (1:1:1) and acclimated in the greenhouse. After 4 weeks, more than 90% of plants survived. Grafting was carried out in spring using Betula pendula as rootstock. The efficiency of this technique ranged from 0% to 50% across genotypes, and 4 out of 10 genotypes were successfully propagated by grafting. The cuttings were treated with commercial root stimulators Stimulax I and Stimulator AS-1, planted in a mixture of peat and sand (1:1) in the greenhouse, and watered regularly. This technique resulted in 0% rooting, however, and no cutting survived until the end of the vegetation period. The results of this study show that protocols for in vitro propagation and grafting can be employed for effective mass propagation of B. oycoviensis, although these processes show genotype-dependent responses.

  Keywords


Betula, Cutting, Grafting, In vitro Propagation, Rooting

Authors’ address

(1)
Jan Vítámvás 0000-0001-8181-8151
Ivan Kuneš 0000-0002-1875-384X
Rostislav Linda 0000-0002-9602-7915
Martin Baláš
Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 1176, Praha 6 Suchdol (Czech Republic)
(2)
Iva Viehmannová 0000-0002-2540-7443
Czech University of Life Sciences, Faculty of Tropical AgriSciences, Kamýcká 129, Praha 6 Suchdol (Czech Republic)

Corresponding author

 
Jan Vítámvás
vitamvas@fld.czu.cz

Citation

Vítámvás J, Kuneš I, Viehmannová I, Linda R, Baláš M (2020). Conservation of Betula oycoviensis, an endangered rare taxon, using vegetative propagation methods. iForest 13: 107-113. - doi: 10.3832/ifor3243-013

Academic Editor

Werther Guidi Nissim

Paper history

Received: Sep 18, 2019
Accepted: Jan 21, 2020

First online: Mar 23, 2020
Publication Date: Apr 30, 2020
Publication Time: 2.07 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 12218
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 8029
Abstract Page Views: 783
PDF Downloads: 2788
Citation/Reference Downloads: 1
XML Downloads: 617

Web Metrics
Days since publication: 1725
Overall contacts: 12218
Avg. contacts per week: 49.58

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2020): 1
Average cites per year: 1.00

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Agresti A, Bini M, Bertaccini B, Ryu E (2008)
Simultaneous confidence intervals for comparing binomial parameters. Biometrics 64: 1270-1275.
CrossRef | Gscholar
(2)
Andrews PK, Marquez CS (1993)
Graft incompatibility. Horticultural Reviews 15: 183-231.
Online | Gscholar
(3)
Badoni A, Chauhan JS (2010)
In vitro sterilization protocol for micropropagation of Solanum tuberosum cv. “Kufri Himalini”. Academia Arena 2 (4): 24-27.
Gscholar
(4)
Baláš M, Kuneš I, Gallo J, Rašáková N (2016)
Review on Betula oycoviensis and foliar morphometry of the species in Volyne, Czech Republic. Dendrobiology 76: 117-125.
CrossRef | Gscholar
(5)
Buriánek V, Novotny P, Frydl J (2014)
Metodická príručka k určování domácích druhu bríz. Certifikovaná metodika [Methodological manual for native birch species determination]. Lesnický pruvodce 3/2014. Výzkumný ústav lesního hospodárství a myslivosti, v. v. i., pp. 40. [in Czech]
Gscholar
(6)
Businge E, Trifonova A, Schneider C, Rödel P, Egertsdotter U (2017)
Evaluation of a new temporary immersion bioreactor system for micropropagation of cultivars of Eucalyptus, birch and fir. Forests 8 (6): 196.
CrossRef | Gscholar
(7)
Darikova JA, Savva YV, Vaganov EA, Grachev AM, Kuznetsova GV (2011)
Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review). Journal of Siberian Federal University - Biology 1 (4): 54-63.
Online | Gscholar
(8)
De Diego N, Montalbán IA, Moncaleán P (2010)
In vitro regeneration of adult Pinus sylvestris L. trees. South African Journal of Botany 76 (1): 158-162.
CrossRef | Gscholar
(9)
Ditmar O (1991)
In vitro regeneration of curly birch, Betula pendula var. carelica. Thaiszia - Journal of Botany 1: 119-124.
Gscholar
(10)
Driver JA, Kuniyuki AH (1984)
In vitro propagation of Paradox walnut Juglans hindsii × Juglans regia rootstock. HortScience 19: 507-509.
Gscholar
(11)
Girgžde E, Samsone I (2017)
Effect of cytokinins on shoot proliferation of silver birch (Betula pendula) in tissue culture. Environmental and Experimental Biology 15: 1-5.
CrossRef | Gscholar
(12)
Grulich V (2012)
Red list of vascular plants of the Czech Republic (3rd edn). Preslia 84 (3): 631-645.
Online | Gscholar
(13)
Hartmann HT, Kester DE, Davies FT, Geneve R (2002)
Plant propagation, principles and practices (7th edn). Prentice-Hall, Englewood Cliffs, NJ, USA, pp. 880.
Gscholar
(14)
Hartmann HT, Kester DE (1975)
Plant propagation, principles and practices (3rd edn). Prentice-Hall, Englewood Cliffs, NJ, USA, pp. 662.
Gscholar
(15)
Häggman H, Sutela S, Welander M (2007)
Micropropagation of Betula pendula Roth including genetically modified material. In: “Protocols for micropropagation of woody trees and fruits” (Jain SM, Häggman H eds). Springer, Dordrecht, Netherlands, pp. 153-162.
CrossRef | Gscholar
(16)
Chalupa V (1987)
European Hardwoods. In: “Cell and Tissue Culture in Forestry” (Bonga JM, Durzan DJ eds). Forestry Sciences, vol. 24-26, Springer, Dordrecht, Netherlands, pp. 224-246.
CrossRef | Gscholar
(17)
Chalupa V (1989)
Micropropagation of mature trees of birch (Betula pendula Roth.) and aspen (Populus tremula L.). Lesnictví 35: 983-993.
Gscholar
(18)
Iliev I, Scaltsoyiannes A, Rubos A (2003)
Shoot organogenesis and plant regeneration from leaf callus cultures of black bark silver birch (Betula pendula Roth. “Melanocortea”). Acta Horticulturae 616: 321-326.
CrossRef | Gscholar
(19)
Jermakov VI (1970)
Razmnozhenie berezy karel’skoj metodom privivki [Propagation of Karelian birch by the grafting method]. Lesnaya Genetika, Selekcia i Semenovodstvo, Petrozavodsk, pp. 282-293. [in Russian]
Gscholar
(20)
Kaplan Z (2019)
Klíč ke kvetene Ceské republiky [Key to the flora of the Czech Republic]. Revised and updated edition, Academia, Prague, Czech Republic, pp. 1172. [in Czech]
Gscholar
(21)
Kauppi A, Kauppi M, Ulvinen T (1999)
A new columnar form of Betula pubescens from Finland: mophological characteristics and micropropagation. Annales Botanici Fennici 36: 33-41.
Online | Gscholar
(22)
Korczyk A (1967)
Rozmieszczenie geograficzne brzozy ojcowskiej (Betula oycoviensis Bess.) [Geographic distribution of Oyców birch (Betula oycoviensis Bess.)]. Ochrona Przyrody 32: 133-170. [in Polish]
Gscholar
(23)
Krzaczek W, Krzaczek T (1968)
New locality of Betula oycoviensis Bess. in Poland. Fragmenta Floristica et Geobotanica 14: 155-156.
Gscholar
(24)
Kríz Z (2003)
Betula L. - bríza: Kvetena Ceské republiky, část II [Betula L. - birch: Flora of the Czech Republic, Part II] (Hejný S, Slavík B eds). Academia, Prague, Czech Republic, pp. 35-46. [in Czech]
Gscholar
(25)
Kubát K, Hrouda L, Chrtek J, Kaplan Z, Kirschner J, Stepánek J (2002)
Klíč ke kvetene Ceské Republiky [Key to the Flora of the Czech Republic]. Academia, Prague, Czech Republic, pp. 928. [in Czech]
Gscholar
(26)
Kuneš I, Linda R, Fér T, Karlík P, Baláš M, Ešnerová J, Vítámvás J, Bíly J, Urfus T (2019)
Is Betula carpatica genetically distinctive? A morphometric, cytometric and molecular study of birches in the Bohemian Massif with a focus on Carpathian birch. PLoS ONE 14(10): e0224387.
CrossRef | Gscholar
(27)
Ljubavskaja AJ (1966)
Selekciya i razvedenie karel’skoj berezy [Selection and breeding of Karelian birch]. Lesnaya Promyslennost, Moskva, Russia, pp. 123. [in Russian]
Gscholar
(28)
Lloyd G, McCown B (1980)
Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoottip culture. Combined Proceedings, International Plant Propagators’ Society 30: 421-427.
Online | Gscholar
(29)
Máchová P, Malá J, Cvrčková H (2012)
Mikropropagace brízy trpasličí [Micropropagation of Betula nana]. Zprávy lesnického výzkumu 57: 202-206. [in Czech]
Gscholar
(30)
Marczynski S, Joustra MK (1993)
Influence ofdaylength and irradiance on growth of the stock plants and subsequent rooting of cuttings of Betula utilis D. Don. and Corylus maxima Mill. cultivar “Purpurea”. Scientia Horticulturae 55: 291-301.
CrossRef | Gscholar
(31)
Mirabbasi AM, Hosseinpour B (2014)
Prevention of shoot tip necrosis, hyperhydricity and callus production associated with in vitro shoot culture of Ulmus glabra. Journal of Novel Applied Sciences 3 (6): 683-689.
Online | Gscholar
(32)
Murashige T, Skoog F (1962)
A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
CrossRef | Gscholar
(33)
Pellett NE, Alpert K (1985)
Rooting softwood cuttings of mature Betula papyrifera. Combined proceedings, International Plant Propagators’ Society 35: 519-525.
Gscholar
(34)
Pijut PM, Woeste KE, Michler CH (2010)
Promotion of adventitious root formation of difficult- to-root hardwood tree species. In: “Horticultural reviews”, vol. 38 (Janick J ed). John Wiley and Sons, Hoboken, NJ, USA, pp. 213-251.
CrossRef | Gscholar
(35)
Pritchard HW, Moat JF, Ferraz JBS, Marks TR, Luís J, Camargo C, Nadarajan J, Ferraz IDK (2014)
Forest ecology and management innovative approaches to the preservation of forest trees. Forest Ecology and Management 333: 88-98.
CrossRef | Gscholar
(36)
Raghu AV, Geetha SP, Martin G, Balachandran I, Ravindran PN (2006)
In vitro clonal propagation through mature nodes of Tinospora cordifolia (Willd.) Hook. F. and Thoms.: an important ayurvedic medicinal plant. In Vitro Cellular and Developmental Biology - Plant 42: 584-588.
CrossRef | Gscholar
(37)
Rathwell R, Shukla MR, Jones MP, Saxena PK (2016)
In vitro propagation of cherry birch (Betula lenta L.). Canadian Journal of Plant Science 96: 571-578.
CrossRef | Gscholar
(38)
Ranney TG, Whitman EPII (1995)
Growth and survival of “Whitespire” Japanese birch grafted on rootstocks of five species of birch. HortScience 30 (3): 521-522.
CrossRef | Gscholar
(39)
R Core Team (2017)
R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Online | Gscholar
(40)
Ryynänen L, Ryynänen M (1986)
Propagation of adult curly birch succeeds with tissue culture. Silva Fennica 20: 139-147.
CrossRef | Gscholar
(41)
Särkilahti E (1988)
Micropropagation of a mature colchicine - polyploid and irradiation - mutant of Betula pendula Roth. Tree Physiology 4: 173-179.
CrossRef | Gscholar
(42)
Siegel S, Castellan NJ (1988)
Non parametric statistics for the behavioural sciences. MacGraw Hill Int., New York, USA, pp. 399.
Gscholar
(43)
Sota V, Kongjika E (2014)
The effect of nutrient media in micropropagation and in vitro conservation of wild population of mahaleb cherry (Prunus mahaleb L.). The Journal of Microbiology, Biotechnology and Food Sciences 3 (6): 453-456.
Online | Gscholar
(44)
Staszkiewicz J, Wójcicki JJ (1992)
Betula × oycoviensis” Besser in the environs of Kraków (S. Poland). Veröffentlichungen des Geobotanischen Institutes der Eidgenössische Technische Hochschule, Stiftung Rübel, Zürich 107: 94-97.
Gscholar
(45)
Staszkiewicz J (2013)
Brzoza ojcowska (Betula oycoviensis Bess.) na górze Skielek w Beskidzie Wyspowym [Ojcow birch (Betula oycoviensis Bess.) on Skielek Mountain in the Beskid Wyspowy]. Web site. [in Polish]
Online | Gscholar
(46)
Václav E (1973)
Vegetative propagation of birch. New Zealand Journal of Forestry Science 4 (2): 237-241.
Gscholar
(47)
Viherä-Aarnio A, Velling P (2001)
Micropropagated silver birches (Betula pendula) in the field - performance and clonal differences. Silva Fennica 35: 385-401.
CrossRef | Gscholar
(48)
Wakita Y, Sasamoto H, Yokota S, Yoshizawa N (1996)
Plant regeneration from cell suspension cultures of Betula platyphylla var. Japonica. Plant Tissue Culture Letters 13: 49-54.
CrossRef | Gscholar
(49)
Welander M (1993)
Micropropagation of Birch. In: “Micropropagation of woody plants” (Ahuja MR eds). Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 223-246.
CrossRef | Gscholar
(50)
Wickham H (2016)
ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, USA, pp. 213.
Online | Gscholar
(51)
Wynne J, McDonald MS (2002)
Adventitious root formation in woody plant tissue: The influence of light and indole-3-butyric acid (IBA) on adventitious root induction of Betula pendula. In Vitro Cellular and Developmental Biology - Plant 38: 210-212.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info