iForest - Biogeosciences and Forestry


Vascular plants diversity in short rotation coppices: a reliable source of ecosystem services or farmland dead loss?

Alexander Fehér (1)   , Lýdia Končeková (1), Daniela Halmová (1), Piotr Prus (2), Zita Izakovičová (3), Marian Dragoi (4)

iForest - Biogeosciences and Forestry, Volume 13, Issue 4, Pages 345-350 (2020)
doi: https://doi.org/10.3832/ifor3055-013
Published: Aug 17, 2020 - Copyright © 2020 SISEF

Research Articles

Short rotation coppices (SRCs) are a relatively new type of crop stand that is usually established on agricultural land in intensively used landscapes. However, SRCs also offer services other than the production of renewable energy. We evaluated the more complex significance of SRCs by including the other important potential ecosystem services of these stands. The objective of this paper was to evaluate the ecosystem services and disservices of SRCs by inductive (bottom-up) methods moving from the species-level to the ecosystem services on the basis of the spontaneous vascular plants diversity in SRCs. We also compared the plant-diversity-based potential ecosystem services and disservices of field SRCs, crops and forests in the same landscape in southwestern Slovakia. It was found that SRCs had an intermediate vascular plants species composition between those of forest ecosystems and agroecosystems. Among the ten evaluated ecosystem services and disservices, considering the sum of the positive and negative evaluations, SRCs had an intermediate position between the forests and arable-land vegetation. When comparing the ecosystem services of the SRCs with those of the forest ecosystems and agroecosystems, the SRCs achieved the best rating for species richness, remediation and collectables. SRCs had the worst rating for providing pasture and had the highest proportion of toxic and allergenic plants. Interestingly, SRCs achieved positive values in ecosystem services and mainly recorded the worst values in the ecosystem disservices. The direct utilization of these services and the economic balance of ecosystem services and disservices require further study.


Bioenergy, Ecosystem Service, Farmland, Forest Ecosystem, Short Rotation Coppice

Authors’ address

Alexander Fehér
Lýdia Končeková 0000-0001-9032-3118
Daniela Halmová 0000-0001-5172-0997
Slovak University of Agriculture in Nitra, Mariánska 10, SK-949 01 Nitra (Slovakia)
Piotr Prus 0000-0002-4447-4019
UTP University of Science and Technology in Bydgoszcz, ul. Ks. Kordeckiego 20, PL-85-225 Bydgoszcz (Poland)
Zita Izakovičová 0000-0002-2977-403X
Institute of Landscape Ecology, Slovak Academy of Sciences, Stefanikova 3, P.O.Box 254, SK-814 99 Bratislava (Slovakia)
Marian Dragoi 0000-0003-3295-0038
University of Suceava, 13 Universitatii str., Suceava (Romania)

Corresponding author

Alexander Fehér


Fehér A, Končeková L, Halmová D, Prus P, Izakovičová Z, Dragoi M (2020). Vascular plants diversity in short rotation coppices: a reliable source of ecosystem services or farmland dead loss?. iForest 13: 345-350. - doi: 10.3832/ifor3055-013

Academic Editor

Gianfranco Minotta

Paper history

Received: Feb 01, 2019
Accepted: Jun 10, 2020

First online: Aug 17, 2020
Publication Date: Aug 31, 2020
Publication Time: 2.27 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 9610
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 4972
Abstract Page Views: 380
PDF Downloads: 3842
Citation/Reference Downloads: 0
XML Downloads: 416

Web Metrics
Days since publication: 1403
Overall contacts: 9610
Avg. contacts per week: 47.95

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Albanito F, Beringer T, Corstanje R, Poulter B, Stephenson A, Zawadzka J, Smith P (2016)
Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. Global Change Biology Bioenergy 8: 81-95.
CrossRef | Gscholar
Baker HG (1965)
Characteristics and mode of origin of weeds. In: “The Genetics of Colonizing Species“ (Baker HG, Stebbins GL eds). Academic Press, New York, USA, pp. 147-172.
Baum S, Bolte A, Weih M (2012)
High value of short rotation coppice plantations for phytodiversity in rural landscape. Global Change Biology Bioenergy 4: 728-738.
CrossRef | Gscholar
Bennick J, Holway A, Juers E, Surprenant R (2008)
Willow biomass: an assessment of the ecological and economic feasibility of growing willow biomass for Colgate University. Colgate University, Hamilton, NY, USA, pp. 35.
Online | Gscholar
Benton TG, Vickery JA, Wilson JD (2003)
Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution 18: 182-188.
CrossRef | Gscholar
Birdsey R, Pan Y (2015)
Trends in management of the world’s forests and impacts on carbon stocks. Forest Ecology and Management 355: 83-90.
CrossRef | Gscholar
Bourke D, Stanley D, O’Rourke E, Thompson R, Carnus T, Dauber J, Emmerson M, Whelan P, Hecq F, Flynn E, Dolan L, Stout J (2014)
Response of farmland biodiversity to the introduction of bioenergy crops: effects of local factors and surrounding landscape context. Global Change Biology Bioenergy 6: 275-289.
CrossRef | Gscholar
Ter Braak CJF, Smilauer P (2002)
CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen, Germany and Ceské Budejovice, Czeck Republic, pp. 499.
Online | Gscholar
Braun-Blanquet J (1964)
Pflanzensoziologie. Grundzüge der Vegetationskunde [Plant sociology. Basics of vegetation science]. Springer Verlag, Wien-New York, pp. 865. [in German]
CICES (2015)
Common International Classification of Ecosystem Services. Biodiversity Information System for Europe - BISE, Web site.
Online | Gscholar
Dauber J, Emmerson M, Jones M, Stout J, Finnan J (2010a)
Strategic overview of influences of biomass crop production on biodiversity and ecosystems services in Ireland. Simbiosys EPA, Dublin, Ireland, pp. 12.
Online | Gscholar
Dauber J, Jones MB, Stout JC (2010b)
The impact of biomass crop cultivation on temperate biodiversity. Global Change Biology Bioenergy 2: 289-309.
CrossRef | Gscholar
Dillen M, Vanhellemont M, Verdonckt P, Maes WH, Steppe K, Verheyen K (2016)
Productivity, stand dynamics and the selection effect in a mixed willow clone short rotation coppice plantation. Biomass and Bioenergy 87: 46-54.
CrossRef | Gscholar
Doherty S, Rydberg T, Ekbladh G, Grönlund E, Ingemarson F, Karlsson L, Nilsson S, Strid Eriksson I (2002)
Ecosystem properties and principles of living systems as foundation for sustainable agriculture - critical reviews of environmental assessment tools, key findings and questions from a course process. Ekologiskt Lantbruk 32, Swedish University of Agriculture Science, Centre for Sustainable Agriculture, Uppsala, Sweden, pp. 80.
EEA (2007)
Estimating the environmentally compatible bioenergy potential from agriculture. Technical report no. 12/2007, European Environment Agency, Copenhagen, Denmark, pp. 138.
Online | Gscholar
Fehér A, Halmová D, Končeková L (2012a)
Spontaneous associated plants in short rotation coppice: challenge for invaders. In: Proceedings of the “7th European Conference on Biological Invasions“ [GEIB Grupo Especialista en Invasiones Biologicas eds]. Pontevedra (Spain) 12-14 Sept 2012. Grupo Especialista en Invasiones Biologicas, Leon, Spain, pp. 330.
Fehér A, Halmová D, Končeková L (2014)
Evaluation of biodiversity of ground flora in short rotation coppice: positive and negative externalities. In: Proceedings of the “22nd European Biomass Conference and Exhibition“ (Hoffmann C, Baxter D, Maniatis K, Grassi A, Helm P eds). Hamburg (Germany) 23-26 June 2014. ETA - Florence Renewable Energies, Florence, Italy, pp. 342-345.
Fehér A, Končeková L, Glemnitz M, Berger G, Pfeffer H, Herzon I (2012b)
Maintaining and promoting biodiversity. In: “Sustainable Agriculture“ (Jakobsson C ed). Baltic University Press, Uppsala, Sweden, pp. 371-387.
Online | Gscholar
Fehér A, Wander M (2012)
Assessment of sustainable land use. In: “Rural development and land use“ (Karlson I, Rydén L eds). Baltic University Press, Uppsala, Sweden, pp. 243-255.
Online | Gscholar
Fry D, Slater F (2009)
The biodiversity of short rotation willow coppice in the Welsh landscape. Aberystwyth University, Aberystwyth, Wales, UK, pp. 154.
Online | Gscholar
Furman E, Peltola T, Varjopuro R (2009)
Interdisciplinary research framework for identifying research needs. Case: bioenergy-biodiversity interlinkage. The Finnish Environment 17 (Finnish Environment Institute). Edita Publishing, Helsinki, Finland, pp. 95.
Online | Gscholar
Grunewald K, Bastian O (2015)
Ecosystem services - concept, methods and case studies. Springer-Verlag, Berlin, Heidelberg, Germany, pp. 312.
Online | Gscholar
Gustaffson L (1987)
Plant conservation aspects of energy forestry - a new type of land use in Sweden. Forest Ecology and Management 21: 141-161.
CrossRef | Gscholar
Jurko A (1990)
Ekologické a socioekonomické hodnotenie vegetácie [Ecological and social-economic evaluation of vegetation]. Príroda, Bratislava, Slovak Republic, pp. 200. [in Slovakian]
Knauf M, Köhl M, Mues V, Olschofsky K, Frühwald A (2015)
Modeling the CO2 effects of forest management and wood usage on a regional basis. Carbon Balance and Management 10: 1-12.
CrossRef | Gscholar
Krug J, Koehl M, Kownatzki D (2012)
Revaluing unmanaged forests for climate change mitigation. Carbon Balance and Management 7 (1): 605.
CrossRef | Gscholar
Langeveld H, Quist-Wessel F, Dimitriou I, Aronsson P, Baum C, Schulz U, Bolte A, Baum S, Kohn J, Weih M, Gruss H, Leinweber P, Lamersdorf N, Schmidt-Walter P, Berndes G (2012)
Assessing environmental impacts of short rotation coppice (SRC) expansion: model definition and preliminary models. Bioenergy Research 5: 621-635.
CrossRef | Gscholar
Líška E, Cernuško K, Hunková E, Otepka P (2002)
Biológia burín [Weed biology]. SPU, Nitra, Slovak Republic, pp. 221. [in Slovakian]
Lupp G, Bastian O, Grunewald K (2015)
Energy crop production - a complex problem for assessing ES. In: “Ecosystem Services - Concept, Methods and Case Studies “ (Grunewald K, Bastian O eds). Springer-Verlag, Berlin, Heidelberg, pp. 112-118.
Lysen E, Van Egmond S (2008)
Climate change scientific assessment and policy analysis. Biomass assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy, Main report. Netherlands Environmental Assessment Agency MNP, Bilthoven, Netherlands, pp. 108.
Online | Gscholar
Mairota P, Buckley P, Suchomel C, Heinsoo K, Verheyen K, Hédl R, Terzuolo PG, Sindaco R, Carpanelli A (2016)
Integrating conservation objectives into forest management: coppice management and forest habitats in Natura 2000 sites. iForest - Biogeosciences and Forestry 9: 560-568.
CrossRef | Gscholar
Mantau U (2015)
Wood flow analysis: quantification of resource potentials, cascades and carbon effects. Biomass and Bioenergy 79: 28-38.
CrossRef | Gscholar
MEA (2005)
Ecosystems and human well-being: synthesis. A Report of the Millennium Ecosystem Assessment. Island Press, Washington, DC, USA, pp. 155.
Online | Gscholar
Medvecká J, Kliment J, Májeková J, Halada L, Zaliberová M, Gojdičová E, Feráková V, Jarolímek I (2012)
Inventory of the alien flora of Slovakia. Preslia 84: 257-309.
Online | Gscholar
Mézière D, Petit S, Granger S, Biju-Duval J, Colbach N (2015)
Developing a set of simulation-based indicators to assess harmfulness and contribution to biodiversity of weed communities in cropping systems. Ecological Indicators 48: 157-170.
CrossRef | Gscholar
Mueller-Dombois D, Ellenberg H (1974)
Aims and methods of vegetation ecology. John Wiley and Sons, New York, USA, pp. 547.
Online | Gscholar
Pedroli B, Elbersen B, Frederiksen P, Grandin U, Heikkilä R, Henning Krogh P, Izakovičová Z, Johansen A, Meiresonne L, Spijker J (2013)
Is energy cropping in Europe compatible with biodiversity? Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass and Bioenergy 55: 73-86.
CrossRef | Gscholar
Petzold R, Butler-Manning D, Feldwisch N, Glaser T, Schmidt PA, Denner M, Feger KH (2014)
Linking biomass production in short rotation coppice with soil protection and nature conservation. iForest - Biogeosciences and Forestry 7: 353-362.
CrossRef | Gscholar
Pučka I, Lazdina D, Bebre I (2016)
Ground flora in plantations of three years old short rotation willow coppice. Agronomy Research 14: 1450-1466.
Online | Gscholar
Rugani B, Golkowska K, Vázquez-Rowe I, Koster D, Benetto E, Verdonckt P (2015)
Simulation of environmental impact scores within the life cycle of mixed wood chips from alternative short rotation coppice systems in Flanders (Belgium). Applied Energy 156: 449-464.
CrossRef | Gscholar
Sage RB (1999)
Weed competition in willow coppice crops: the cause and extent of yield losses. Weed Research 39: 399-411.
CrossRef | Gscholar
Schulze J, Frank K, Priess JA, Meyer MA (2016)
Assessing regional-scale impacts of short rotation coppices on ecosystem services by modeling land-use decisions. PLoS One 11 (4): e0153862.
CrossRef | Gscholar
Tscharntke T, Clough Y, Thomas C, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012)
Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation 151: 53-59.
CrossRef | Gscholar
Vanbeveren S, Ceulemans R (2019)
Biodiversity in short-rotation coppice. Renewable and Sustainable Energy Reviews 111: 34-43.
CrossRef | Gscholar
Verheyen K, Buggenhout M, Vangansbeke P, De Dobbelaere A, Verdonckt P, Bonte D (2014)
Potential of short rotation coppice plantations to reinforce functional biodiversity in agricultural landscapes. Biomass and Bioenergy 67: 435-442.
CrossRef | Gscholar
Werner F, Taverna R, Hofer P, Richter K (2006)
Greenhouse gas dynamics of an increased use of wood in buildings in Switzerland. Climatic Change 74: 319-347.
CrossRef | Gscholar
Wittmer H, Van Zyl H, Brown C, Rode J, Ozdemiroglu E, Bertrand N, Brink P, Seidl A, Kettunen M, Mazza L, Manns F, Hundorf J, Renner I, Christov S, Sukhdev P (2013)
TEEB - the economics of ecosystems and biodiversity: guidance manual for TEEB country studies. Version 1.0. UN - United Nations Environment Programme, Geneva, Switzerland, pp. 92.
Online | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info