Forest biomass is a renewable energy source, more climate-friendly than fossil fuels and widely available in Europe. The wood energy chain has been suggested as a means to re-activate forest management and improve the value of forest stands in marginalized rural areas. However, wall-to-wall estimates of forest biomass, needed to design the location and size of power and heat biomass plants in any given territory, are notoriously difficult to obtain. This paper tests an algorithm to predict forest biomass using publicly available Landsat satellite imagery in the Liguria region, northern Italy. We used regional forest inventory data to train and validate an artificial neural network (ANN) classifier that uses remotely-sensed information such as three principal components of Landsat-5 TM spectral bands, the Enhanced Vegetation Index (EVI), and topography, to retrieve aboveground live tree volume. Percent root mean square error was -9% and -23% for conifers and broadleaves respectively in the calibration dataset, and -27% and -24% in the validation dataset. The reconstructed volume map was updated to present day using current volume increment rates reported by the Italian National Forest Inventory. A wall-to-wall map of forest biomass from harvest residues was finally produced based on species-specific wood density, biomass expansion factors, volume logged for timber assortments, forest accessibility, and topography. Predicted aboveground forest volume ranged from 81 to 391 m3 ha-1. In forests available for wood supply (70% of the total), planned volume removals averaged 25.4 m3 ha-1, or 18.7% of the average standing stock across. Biomass available for bioenergy supply was 1.295.921 million Mg dry matter or 8.95 Mg ha-1. This analysis workflow can be replicated in all mountain regions with a predominant broadleaved coppice component.
Keywords
, , , , ,
Citation
Vacchiano G, Berretti R, Motta R, Mondino Borgogno E (2018). Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery. iForest 11: 459-468. - doi: 10.3832/ifor2655-011
Academic Editor
Rodolfo Picchio
Paper history
Received: Oct 18, 2017
Accepted: Apr 17, 2018
First online: Jul 02, 2018
Publication Date: Aug 31, 2018
Publication Time: 2.53 months
© SISEF - The Italian Society of Silviculture and Forest Ecology 2018
Open Access
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Breakdown by View Type
(Waiting for server response...)
Article Usage
Total Article Views: 19697
(from publication date up to now)
Breakdown by View Type
HTML Page Views: 15368
Abstract Page Views: 954
PDF Downloads: 2840
Citation/Reference Downloads: 7
XML Downloads: 528
Web Metrics
Days since publication: 2272
Overall contacts: 19697
Avg. contacts per week: 60.69
Article Citations
Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)
Total number of cites (since 2018): 3
Average cites per year: 1.00
Publication Metrics
by Dimensions ©
Articles citing this article
List of the papers citing this article based on CrossRef Cited-by.
(1)
Alberdi I, Michalak R, Fischer C, Gasparini P, Brändli UB, Tomter SM, Kuliesis A, Snorrason A, Redmond J, Hernández L, Lanz A (2016)Towards harmonized assessment of European forest availability for wood supply in Europe. Forest Policy and Economics 70: 20-29.
CrossRef |
Gscholar
(2)
Avitabile V, Herold M, Heuvelink G, Lewis SL, Phillips OL, Asner GP, Armston J, Ashton PS, Banin L, Bayol N, Berry NJ (2016)An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology 22 (4): 1406-1420.
CrossRef |
Gscholar
(3)
Barbati A, Corona P, Mattioli W, Quatrini A (2012)Biomassa forestale per la produzione di energia termica: un modello di analisi per l’alta valle dell’Aniene [Forest biomass for heat energy generation: an analysis model for the Upper valley of Aniene River (Central Italy)]. Italian Journal of Forest and Mountain Environments 67 (4): 329-336. [in Italian]
CrossRef |
Gscholar
(4)
Barreiro S, Schelhaas MJ, Kändler G, Antón-Fernández C, Colin A, Bontemps JD, Alberdi I, Condés S, Dumitru M, Ferezliev A, Fischer C (2016)Overview of methods and tools for evaluating future woody biomass availability in European countries. Annals of Forest Science 73 (4): 823-837.
CrossRef |
Gscholar
(5)
Blackard J, Finco M, Helmer E, Holden G, Hoppus M, Jacobs D, Lister A, Moisen G, Nelson M, Riemann R, Ruefenacht B, Salajanu D, Weyermann DL, Winterberger KC, Brandeis TJ, Czaplewski RL, McRoberts RE, Patterson PL, Tymcio RP (2008)Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment 112: 1658-1677.
CrossRef |
Gscholar
(6)
Bocci M, Vissani M (2010)Bando di gara per fornitura della carta dei tipi forestali in scala 1: 25.000 della Regione Liguria. Relazione illustrativa [Specification for the design of a forest type map in Liguria Region, 1: 25.000. Technical Description]. Geographike srl, Siena, Italy, pp. 48. [in Italian]
Online |
Gscholar
(7)
Bodart C, Eva H, Beuchle R, Raši R, Simonetti D, Stibig HJ, Brink A, Lindquist E, Achard F (2011)Pre-processing of a sample of multi-scene and multi-date Landsat imagery used to monitor forest cover changes over the tropics. ISPRS Journal of Photogrammetry and Remote Sensing 66 (5): 555-563.
CrossRef |
Gscholar
(8)
Chirici G, Barbati A, Maselli F (2007)Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data. Forest Ecology and Management 246 (2): 285-295.
CrossRef |
Gscholar
(9)
Cozzi M, Di Napoli F, Viccaro M, Romano S (2013)Use of forest residues for building forest biomass supply chains: technical and economic analysis of the production process. Forests 4 (4): 1121-1140.
CrossRef |
Gscholar
(10)
Du L, Zhou T, Zou Z, Zhao X, Huang K, Wu H (2014)Mapping forest biomass using remote sensing and national forest inventory in China. Forests 5 (6): 1267-1283.
CrossRef |
Gscholar
(11)
European Commission (2014)COM(2014) 15 final, a policy framework for climate and energy in the period from 2020 to 2030. European Commission, Bruxelles, Belgium, pp. 12. URL.
Online |
Gscholar
(12)
Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B (2014)Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment 154: 102-114.
CrossRef |
Gscholar
(13)
Forrester DI, Tachauer IH, Annighoefer P, Barbeito I, Pretzsch H, Ruiz-Peinado R, Stark H, Vacchiano G, Zlatanov T, Chakraborty T, Saha S (2017)Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management 396: 160-175.
CrossRef |
Gscholar
(14)
Galidaki G, Zianis D, Gitas I, Radoglou K, Karathanassi V, Tsakiri-Strati M, Woodhouse I, Mallinis G (2016)Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. International Journal of Remote Sensing 38: 1940-1966.
CrossRef |
Gscholar
(15)
Gallaun H, Zanchi G, Nabuurs G, Hengeveld G, Schardt M, Verkerk PJ (2010)EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. Forest Ecology and Management 260: 252-261.
CrossRef |
Gscholar
(16)
Gasparini P, Tabacchi G (2011)L’inventario nazionale delle foreste e dei serbatoi forestali di Carbonio INFC 2005. Secondo inventario forestale nazionale italiano. Metodi e risultati [National Forest and carbon Sink Inventory INFC 2005. Second National Forest Inventory. Methods and Results]. Ministero delle Politiche Agricole, Alimentari e Forestali, Corpo Forestale dello Stato, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di ricerca per il Monitoraggio e la Pianificazione Forestale, Edagricole, Bologna, pp. 653. [in Italian]
Gscholar
(17)
Hagan MT, Demuth HB, Beale MH, De Jesus O (2014)Neural network design. PWS Publishing, Boston, MA, USA, pp. 800.
Online |
Gscholar
(18)
Hagan MT, Menhaj M (1994)Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5: 989-993.
CrossRef |
Gscholar
(19)
Hasenauer H, Neumann M, Moreno A, Running S (2017)Assessing the resources and mitigation potential of European forests. Energy Procedia 125: 372-378.
CrossRef |
Gscholar
(20)
Haykin S (1998)Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River, NJ, USA, pp. 842.
Gscholar
(21)
Houghton RA (2005)Aboveground forest biomass and the global carbon balance. Global Change Biology 11: 945-958.
CrossRef |
Gscholar
(22)
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002)Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83 (1): 195-213.
CrossRef |
Gscholar
(23)
Ingram JC, Dawson TP, Whittaker RJ (2005)Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment 94 (4): 491-507.
CrossRef |
Gscholar
(24)
Jensen JR, Qiu F, Ji MH (1999)Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data. International Journal of Remote Sensing 20: 2805-2822.
CrossRef |
Gscholar
(25)
Kraxner F, Leduc S, Serrano Leon H, Garegnani G, Gros J, Sacchelli S, Zambelli P, Ciolli M, Geri F (2015)Modeling visualization of optimal locations for renewable energy production in the Alpine Space with special focus on selected pilot areas. International Institute of Applied Systems Analysis (IIASA), Vienna, Austria, pp. 33.
Online |
Gscholar
(26)
Lasserre B, Chirici G, Chiavetta U, Garfì V, Tognetti R, Drigo R, Di Martino P, Marchetti M (2011)Assessment of potential bioenergy from coppice forests through the integration of remote sensing and field surveys. Biomass and Bioenergy 35 (1): 716-724.
CrossRef |
Gscholar
(27)
Lessio F, Mondino EB, Alma A (2011)Spatial patterns of
Scaphoideus titanus (Hemiptera: Cicadellidae): a geostatistical and neural network approach. International Journal of Pest Management 57 (3): 205-216.
CrossRef |
Gscholar
(28)
Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2016)A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth 9 (1): 63-105.
CrossRef |
Gscholar
(29)
Lucas RM, Mitchell AL, Armston J (2015)Measurement of forest above-ground biomass using active and passive remote sensing at large (subnational to global) scales. Current Forestry Reports 1 (3): 162-177.
CrossRef |
Gscholar
(30)
Mantau U, Gschwantner T, Paletto A, Mayr ML, Blanke C, Strukova E, Avdagic A, Camin P, Thivolle-Cazat A, Döring P, Petrauskas E (2016)From inventory to consumer biomass availabilityâthe ITOC model. Annals of Forest Science 73 (4): 885-894.
CrossRef |
Gscholar
(31)
Margolis HA, Nelson RF, Montesano PM, Beaudoin A, Sun G, Andersen HE, Wulder MA (2015)Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research 45 (7): 838-855.
CrossRef |
Gscholar
(32)
Marzano R, Lingua E, Garbarino M (2012)Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a Mediterranean forest. iForest 5 (3): 93-100.
CrossRef |
Gscholar
(33)
Monaco F, Tortorella W (2015)I comuni della Strategia Nazionale Aree Interne [Municipalities in the National Strategy for Internal Areas]. Fondazione IFEL, Roma, Italy, pp. 150. [in Italian]
Gscholar
(34)
Notaro S, Paletto A (2011)Links between mountain communities and environmental services in the Italian Alps. Sociologia Ruralis 51 (2): 137-157.
CrossRef |
Gscholar
(35)
Obama B (2017)The irreversible momentum of clean energy. Science 355 (6321): 126-129.
CrossRef |
Gscholar
(36)
Paiano A, Lagioia G (2016)Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case. Energy Policy 91: 161-173.
CrossRef |
Gscholar
(37)
Paolotti L, Martino G, Marchini A, Boggia A (2017)Economic and environmental assessment of agro-energy wood biomass supply chains. Biomass and Bioenergy 97: 172-185.
CrossRef |
Gscholar
(38)
Peel MC, Finlayson BL, McMahon TA (2007)Updated world map of the Köppen-Geiger climate classification. Hydrological and Earth System Sciences 11: 1633-1644.
CrossRef |
Gscholar
(39)
Penco D (2014)Rapporto sullo stato delle foreste in Liguria 2011-2013 [State of Liguria forests 2011-2013]. Compagnia delle Foreste, Arezzo, Italy, pp. 131. [in Italian]
Gscholar
(40)
Persson H, Wallerman J, Olsson H, Fransson JE (2013)Estimating forest biomass and height using optical stereo satellite data and a DTM from laser scanning data. Canadian Journal of Remote Sensing 39 (03): 251-262.
CrossRef |
Gscholar
(41)
Pesenti Barili B, Ghirone M, Federici S (2009)Il clima della Liguria [Climate of Liguria]. In: “Rapporto sullo stato delle foreste in Liguria 2008” (Penco D ed). Compagnia delle Foreste, Arez-zo, Italy, pp. 45-55. [in Italian]
Gscholar
(42)
Phua MH, Ling ZY, Wong W, Korom A, Ahmad B, Besar NA, Tsuyuki S, Ioki K, Hoshimoto K, Hirata Y, Saito H (2014)Estimation of above-ground biomass of a tropical forest in Northern Borneo using high-resolution satellite image. Journal of Forest and Environmental Science 30 (2): 233-242.
CrossRef |
Gscholar
(43)
Regione Liguria (1999)Regolamento 29 giugno 1999, n. 1: regolamento delle prescrizioni di massima e di polizia forestale [Regulation of 29 June 1999, n. 1: general and forest police rules]. Regione Liguria, Genova, Italy, pp. 30. [in Italian].
Online |
Gscholar
(44)
Regione Liguria (2017)Piano energetico ambientale regionale PEAR 2014-2020 [Regional environmental energy plan PEAR 2014-2020]. Regione Liguria, Genova, Italy, pp. 313. [in Italian]
Online |
Gscholar
(45)
Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016)Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534 (7609): 631-639.
CrossRef |
Gscholar
(46)
Saarela S, Holm S, Grafström A, Schnell S, Gregoire TG, Nelson RF, Ståhl G (2016)Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science 73 (4): 895-910.
CrossRef |
Gscholar
(47)
Sacchelli S, Fagarazzi C, Bernetti I (2013)Economic evaluation of forest biomass production in central Italy: a scenario assessment based on spatial analysis tool. Biomass and Bioenergy 53: 1-10.
CrossRef |
Gscholar
(48)
Tabacchi G, Di Cosmo L, Gasparini P, Morelli S (2012)Stima del volume e della fitomassa delle principali specie forestali italiane. Equazioni di previsione, tavole del volume e tavole della fitomassa arborea epigea. [Assessment of volume and biomass of the main tree species in Italy. Models, volume tables, and aboveground biomass tables]. Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di Ricerca per il Monitoraggio e la Pianificazione Forestale, Trento, Italy, pp. 411. [in Italian]
Gscholar
(49)
Vacchiano G, Magnani F, Collalti A (2012)Modeling Italian forests: state of the art and future challenges. iForest 5 (3): 113-120.
CrossRef |
Gscholar
(50)
Vacchiano G, Berretti R, Mondino EB, Meloni F, Motta R (2016)Assessing the effect of disturbances on the functionality of direct protection forests. Mountain Research and Development 36 (1): 41-55.
CrossRef |
Gscholar
(51)
Vacchiano G, Berretti R, Brenta P, Meloni F, Nosenzo A, Terzuolo PG, Motta R (2018a)Vegetative regeneration of beech coppices for biomass in Piedmont, NW Italy. Biomass and Bioenergy 107: 271-278.
CrossRef |
Gscholar
(52)
Vacchiano G, Berretti R, Romano R, Motta R (2018b)Voluntary carbon credits from improved forest management: policy guidelines and case study. iForest 11: 1-10.
CrossRef |
Gscholar
(53)
Verkerk PJ, Anttila P, Eggers J, Lindner M, Asikainen A (2011)The realisable potential supply of woody biomass from forests in the European Union. Forest Ecology and Management 261 (11): 2007-2015.
CrossRef |
Gscholar
(54)
Vitullo M, De Laurentis R, Federici S (2007)La contabilità del carbonio contenuto nelle foreste italiane [Accounting for carbon in Italian forests]. Silvae 3: 91-104. [in Italian]
Gscholar
(55)
Zhang G, Ganguly S, Nemani RR, White MA, Milesi C, Hashimoto H, Wang W, Saatchi S, Yu Y, Myneni RB (2014)Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sensing of Environment 151: 44-56.
CrossRef |
Gscholar
(56)
Zhao P, Lu D, Wang G, Wu C, Huang Y, Yu S (2016)Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sensing 8 (6): 469.
CrossRef |
Gscholar