iForest - Biogeosciences and Forestry


Growing season water balance of an inner alpine Scots pine (Pinus sylvestris L.) forest

Gerhard Wieser (1)   , Andreas Gruber (2), Walter Oberhuber (2)

iForest - Biogeosciences and Forestry, Volume 11, Issue 4, Pages 469-475 (2018)
doi: https://doi.org/10.3832/ifor2626-011
Published: Jul 02, 2018 - Copyright © 2018 SISEF

Research Articles

We estimated components of the water cycle of a 150-year-old Pinus sylvestris forest in an inner Alpine dry valley of the Tyrol, Austria throughout five growing seasons. Forest canopy transpiration (TC) was measured by sap flow measurements scaled to the stand canopy level. Estimates of understory transpiration and forest floor evaporation (ETU) were derived from the soil water budget method, while interception (I) was modelled. Growing season cumulative evapotranspiration (ET = TC + ETU + I) varied between 256 and 322 mm or 51 to 79% of the growing season precipitation. The contribution of TC, ETU, and I to ET were 33, 40 and 27% respectively. Although these values of each layer (evapo)-transpiration are in good agreement with studies carried out in other European Scots pine forests, our estimated growing season total forest water use (Ttot = Tc + ETu) of 200-244 mm is at the lower end of values reported for coniferous forest ecosystems, and thus reflects an adaptation to the low shallow soil water availability. We conclude that Scots pine forests in inner alpine dry valleys are able to cope with high evaporative demand, even when shallow soil water availability is limited.


Forest Water Balance, Scots Pine, Dry Inner Alpine Valley, Evapotranspiration, Interception, Runoff

Authors’ address

Gerhard Wieser
Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Rennweg 1, A-6020 Innsbruck (Austria)
Andreas Gruber
Walter Oberhuber
Department of Botany, Leopold-Franzens-Universität Innsbruck, Sternwartestraße15, A-6020 Innsbruck (Austria)

Corresponding author

Gerhard Wieser


Wieser G, Gruber A, Oberhuber W (2018). Growing season water balance of an inner alpine Scots pine (Pinus sylvestris L.) forest. iForest 11: 469-475. - doi: 10.3832/ifor2626-011

Academic Editor

Emanuele Lingua

Paper history

Received: Sep 06, 2017
Accepted: May 07, 2018

First online: Jul 02, 2018
Publication Date: Aug 31, 2018
Publication Time: 1.87 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 17985
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 14364
Abstract Page Views: 929
PDF Downloads: 2111
Citation/Reference Downloads: 7
XML Downloads: 574

Web Metrics
Days since publication: 2119
Overall contacts: 17985
Avg. contacts per week: 59.41

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2018): 2
Average cites per year: 0.67


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Berbigier P, Diawara A, Lusteau D (1991)
A microclimatic study of the effect of drought on evapotranspiration in a maritime pine stand. Annals of Forest Science 48: 157-177.
CrossRef | Gscholar
Blume HP, Brümmer GW, Horn R, Kandeler E, Kögl-Knabler I, Kretzschmar R, Stahr K, Wilke BM (2010)
Scheffer/Schachtschabel - Lehrbuch der Bodenkunde [Textbook of soil science]. Spektrum Akademischer Verlag, Heidelberg, Germany, pp. 569. [in German]
Brechtel HM (1965)
Methodische Beiträge zur Erfassung der Wechselwirkung zwischen Wald und Wasser [Methodological contributions to the understanding of the interaction between forest and water]. Forstarchiv 35: 229-241. [in German]
Campbell GS, Norman M (1998)
An introduction to environmental biophysics (2nd edn). Springer, New York, USA, pp. 286.
Cermak J, Kucera J, Nadezhdina N (2004)
Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18: 529-546.
CrossRef | Gscholar
Cermak J, Jaroslav S, Hana K, Sona T (2013)
Adsorptive root areas of large pendunculate oak trees differing in health status along a road in Southern Bohemia, Czech Republic. Urban Forestry and Urban Greening 12: 238-245.
CrossRef | Gscholar
Cermak J, Nadezhdina N, Trcala M, Simin J (2015)
Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. iForest - Biogeoscience and Forestry 8: 226-278.
CrossRef | Gscholar
Delzon S, Loustau D (2005)
Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agricultural and Forest Meteorology 129: 105-119.
CrossRef | Gscholar
Ellenberg H, Leuschner C (2010)
Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht [Vegetation of Central Europe including the Alps in an ecological, dynamic and historical perspective]. UTB, Ulmer, Stuttgart, Germany, pp. 1334. [in German]
FAO (2006)
World reference base for soil resources. FAO, World Soil Resource Report, vol. 103, Rome, Italy, pp. 145.
Fliri F (1975)
Das Klima der Alpen im Raume von Tirol. Monographien zur Landeskunde Tirols; Folge I [Climate of the Alps in the Tyrol area. Monographs on the regional studies of Tyrol; Part I]. Universitätsverlag Wagner, Innsbruck, Austria, pp. 454. [in German]
Gielen B, Verbeeck H, Neirynck J, Sampson DA, Vermeiren F, Janssens IA (2010)
Decadal water balance of a temperate Scots pine forest (Pinus sylvestris L.) based on measurements and modelling. Biogeosciences 7: 1247-1261.
CrossRef | Gscholar
Granier A (1985)
Une nouvelle méthode pour la mesure de flux de sève brute dans le tronc des arbres [A new method of sap flow measurement in tree stems]. Annals of Forest Science 42: 193-200. [in French]
CrossRef | Gscholar
Granier A, Breda N, Biron P, Vilette S (1999)
A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological Modelling 116: 269-283.
CrossRef | Gscholar
Ilvensiemi H, Pumpanen J, Duursama R, Hari P, Keronen P, Kolari P, Kulama M, Mammarella I, Nikinmaa E, Rannik U, Pohja T, Siivola E, Vesala T (2010)
Water balance of a boreal Scots pine forest. Boreal Environment Research 15: 375-396.
Jarvis PG, McNaughton KG (1986)
Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research 15: 1-49.
CrossRef | Gscholar
Kelliher FM, Lloyd J, Arneth A, Byers JN, McSeveny TM, Milukova I, Grigoriev S, Panfyorov M, Sogatchev A, Varlargin A, Ziegler W, Bauer G, Schulte ED (1998)
Evaporation from a central Siberian pine forest. Journal of Hydrology 205: 279-296.
CrossRef | Gscholar
Kucerova A, Cermak J, Nedezhdina N, Pokorny J (2010)
Transpiration of Pinus rotundata on a wooded peat bog in central Europe. Trees 24: 919-930.
CrossRef | Gscholar
Law B, Falge E, Gu L, Baldocchi D, Bakwin P, Berbigier P, Davis K, Dolman A, Falk M, Fuentes J, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens I, Jarvis P, Jensen N, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UK, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002)
Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology 113 (1-4): 97-120.
CrossRef | Gscholar
Leo M, Oberhuber W, Schuster R, Grams TEE, Matyssek R, Wieser G (2013)
Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements. European Journal of Forest Research 133: 691-698.
CrossRef | Gscholar
Llores P, Poyatos R, Latron J, Delgado J, Gallert F (2008)
Analysis of three severe droughts (1995-2006) and their effects on Pinus sylvestris transpiration and physiological response in a montane Mediterranean research catchment (Vall-cebre, Spain). Geophysical Research Abstracts 10: EGU2008-A07353.
Lüttenschwager D, Wulf M, Rust F, Forkert J, Hüttl RF (1999)
Tree canopy and field layer transpiration in Scots pine stands. In: “Changes of Atmospheric Chemistry and Effects on Forest Ecosystem” (Hüttl R, Belmann FK eds). Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 97-110.
Meiresone L, Sampson DA, Kowalski AS, Janssens IA, Nadezhdina N, Cermak J, Van Slycken J, Ceulemans R (2003)
Water fluxes estimated from a Belgian Scots pine stand: A comparison of different approaches. Journal of Hydrology 270: 23-252.
CrossRef | Gscholar
Moore KE, Fitzjarrald DR, Saki RK, Freedman JM (2000)
Growing season water balance at a boreal jack pine forest. Water Resources Research 36: 483-493.
CrossRef | Gscholar
Oberhuber W, Gruber A (2010)
Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24: 887-898.
CrossRef | Gscholar
Poyatos R, Llorens P, Pinol J, Rubio C (2008)
Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate. Annals of Forest Research 36: 306.
CrossRef | Gscholar
Prus-Glowack W, Urbaniak L, Bujas E, Curtu AL (2012)
Genetic variation of isolated and peripheral populations of Pinus sylvestris (L.) from glacial refugia. Flora 207: 150-158.
CrossRef | Gscholar
Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013)
Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19: 229-240.
CrossRef | Gscholar
Sarris D, Siegwolf R, Körner C (2013)
Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agricultural and Forest Meteorology 168: 59-68.
CrossRef | Gscholar
Schlesinger WH, Bernhardt ES (2013)
Biogeochemistry - an analysis of global change. Academic Press, Waltham, MA, USA, pp. 672.
Schuster R, Oberhuber W, Gruber A, Wieser G (2016)
Soil drought decreases water-use of pine and spruce but not of larch in a dry inner Alpine valley. Austrian Journal of Forest Science 133: 1-17.
Online | Gscholar
Sturm N, Reber S, Kessler A, Tenhunen JD (1996)
Soil moisture variation and plant water stress at the Hartheim Scots pine plantation. Theoretical and Applied Climatology 53: 123-133.
CrossRef | Gscholar
Turc L (1961)
Evaluation des besoine d’eau d’irrigation, evapotraspitarion potentielle [Assessment of the needs of irrigation water, potential evapotranspiration]. Annals Agronomique 12: 13-49. [in French]
Vincke C, Thiry Y (2008)
Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: evidence from continuous evapotranspiration and water table monitoring. Agricultural and Forest Meteorology 148: 1419-1432.
CrossRef | Gscholar
Waring RH, Running SW (1998)
Forest ecosystems. Analysis at multiple scales (2nd edn). Academic Press, San Diego, California, USA, pp. 370.
Wedler M, Köstner B, Tenhunen JD (1996)
Understory contribution to stand total water loss at an old Norway spruce forest. Verhandlungen Gesellschaft für Ökologie 26: 69-77.
Wieser G, Leo M, Oberhuber W (2014)
Transpiration and canopy conductance in an inner alpine Scots pine (Pinus sylvestris L.) forest. Flora 209: 491-498.
CrossRef | Gscholar
Wullschleger SD, Meinzer FC, Vertessy RA (1998)
A review of whole-plant water use studies in trees. Tree Physiology 18: 499-512.
CrossRef | Gscholar
Zimmermann R, Schulze ED, Wirth C, Schulze EE, McDonald KC (2000)
Canopy transpiration in a chronosequence of Central Siberian pine forests. Global Change Biology 6: 25-37.
CrossRef | Gscholar
Zweifel R, Rigling A, Dobbertin M (2009)
Species-specific stomatal response of trees to drought - a link to vegetation dynamics? Journal of Vegetation Science 20: 442-454.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info