*
 

iForest - Biogeosciences and Forestry

*

Belowground biomass models for young oligotrophic Scots pine stands in Latvia

Laura Kenina   , Andis Bardulis, Roberts Matisons, Rolands Kapostins, Aris Jansons

iForest - Biogeosciences and Forestry, Volume 11, Issue 2, Pages 206-211 (2018)
doi: https://doi.org/10.3832/ifor2553-010
Published: Mar 01, 2018 - Copyright © 2018 SISEF

Research Articles


The increasing interest in carbon budget estimation and the growing use of woody biomass in bioenergy production raises the necessity for precise estimates of belowground biomass and soil carbon pools in forest ecosystems, particularly in terms of changes in the age structure of forests. The aim of this study was to estimate the belowground biomass of young (< 40 years) stands of Scots pine (Pinus sylvestris L.) in Latvia. The biomass of small roots (diameter 2-20 mm), coarse roots (diameter > 20 mm), and stumps of 39 trees from eight stands growing on dry, nutrient-poor mineral soils was measured and compared to the aboveground variables of sampled trees. The results revealed that stumps, small roots, and coarse roots comprised 43%, 35% and 22%, respectively, of the belowground biomass of young Scots pines. The proportion of belowground biomass over the total tree biomass was age-dependent, ranging from 33% to 17% for 8-year and 40-year old trees, respectively. Aboveground tree variables were significantly correlated with the belowground biomass, being stemwood volume and basal area the best predictors (R2 = 0.86-0.98, relative errors = 26-43%) of the belowground biomass components. Accordingly, the developed models produced more accurate estimates compared to previous models for the region, thus reducing the uncertainty in determining the carbon budget for belowground biomass. Still, an analysis of a more comprehensive dataset is needed to account for the effect of the social status of trees, as well as the within- and between-stand variation.

  Keywords


Hemiboreal Forests, Europe, Pinus sylvestris, Allometric Equation, Coarse Roots, Total Root Biomass

Authors’ address

(1)
Laura Kenina
Andis Bardulis
Roberts Matisons
Rolands Kapostins
Aris Jansons
Latvian State Forest Research Institute Silava, Rigas Street 111, LV-2169 Salaspils (Latvia)

Corresponding author

 
Laura Kenina
laura.kenina@silava.lv

Citation

Kenina L, Bardulis A, Matisons R, Kapostins R, Jansons A (2018). Belowground biomass models for young oligotrophic Scots pine stands in Latvia. iForest 11: 206-211. - doi: 10.3832/ifor2553-010

Academic Editor

Claudia Cocozza

Paper history

Received: Jul 14, 2017
Accepted: Dec 20, 2017

First online: Mar 01, 2018
Publication Date: Apr 30, 2018
Publication Time: 2.37 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 18589
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 13949
Abstract Page Views: 838
PDF Downloads: 2950
Citation/Reference Downloads: 14
XML Downloads: 838

Web Metrics
Days since publication: 2242
Overall contacts: 18589
Avg. contacts per week: 58.04

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2018): 5
Average cites per year: 1.67

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Aalde H, Gonzalez P, Gytarsky M, Krug T, Kurz WA, Ogle S, Raison J, Schoene D, Ravindranath NH (2006)
Forest Land. In: “2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme” (Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K eds). IGES, Hayama, Japan, pp. 4.1-4.83.
Gscholar
(2)
Addo-Danso SD, Prescott CE, Smith AR (2016)
Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: a review. Forest Ecology and Management 359: 332-351.
CrossRef | Gscholar
(3)
Ahti T, Hämet-Ahti L, Jalas J (1968)
Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 5 (5): 169-211.
Online | Gscholar
(4)
Baumanis I, Jansons A, Neimane U (2014)
Priede. Selekcija, genetika un seklkopiba Latvija [Scots pine. Selection, genetics and breeding in Latvia]. Latgales druka, Rezekne, Latvia, pp. 325. [in Latvian]
Gscholar
(5)
Bardulis A, Jansons A, Liepa I (2012)
Below-ground biomass production in young stands of Scots pine (Pinus sylvestris L.) on abandoned agricultural land. In: Proceedings of the 18th Annual International Scientific Conference “Research for Rural Development” (Treija S, Skuja I eds). Jelgava (Latvia) 16-18 May 2012. LLU, Jelgava, Latvia, pp. 49-54.
Gscholar
(6)
Bhuiyan R, Minkkinen K, Helmisaari HS, Ojanen P, Penttilä T, Laiho R (2017)
Estimating fine-root production by tree species and understory functional groups in two contrasting peatland forests. Plant and Soil 412: 299-316.
CrossRef | Gscholar
(7)
Brassard BW, Chen HY, Bergeron Y, Paré D (2011)
Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass and Bioenergy 135 (10): 4189-4196.
CrossRef | Gscholar
(8)
Bronisz K, Strub M, Cieszewski C, Bijak S, Bronisz A, Tomusiak R, Wojtan R, Zasada M (2016)
Empirical equations for estimation aboveground biomass of Betula pendula growing on former farming in central Poland. Silva Fennica 50 (4): id 1559.
CrossRef | Gscholar
(9)
Brunner I, Godbold DL (2007)
Tree roots in a changing world. Journal of Forest Research 12 (2): 78-82.
CrossRef | Gscholar
(10)
Bušs K (1976)
Latvijas PSR meža tipologijas pamati [Basis of forest classification in SSR of Latvia]. LRZTIPI, Riga, Latvia, pp. 24. [in Latvian]
Gscholar
(11)
Chakraborty T, Saha S, Reif A (2016)
Biomass equations for European beech growing on dry sites. iForest 9: 751-757.
CrossRef | Gscholar
(12)
Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997)
Root biomass allocation in the world’s upland forests. Oecologia 111: 1-11.
CrossRef | Gscholar
(13)
Dieter M, Elsasser P (2002)
Carbon stocks and carbon stock changes in the tree biomass of Germany forests. Forstwissenschaftliches Centralblatt 121 (4): 195-210.
CrossRef | Gscholar
(14)
IUCN (1993)
Environmental status reports 1993: Estonia, Latvia, Lithuania. Michigan University, USA, pp. 201.
Gscholar
(15)
Finér L, Ohashi M, Niguchi K, Hirano Y (2011)
Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management 261: 265-277.
CrossRef | Gscholar
(16)
Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Brja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007)
Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems 141 (3): 394-405.
CrossRef | Gscholar
(17)
Fogel R (1983)
Root turnover and productivity of coniferous forest. Plant and Soil 71: 75-85.
CrossRef | Gscholar
(18)
Geudens G, Staelens J, Kint V, Goris R, Lust N (2004)
Allometric biomass equations for Scots pine (Pinus sylvestris L.) seedlings during the first years of establishment in dense natural regeneration. Annals of Forest Science 61: 653-659.
CrossRef | Gscholar
(19)
Helmisaari HS, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002)
Below- and above-ground biomass, production and nitrogen use in Scots pine stands in Eastern Finland. Forest Ecology and Management 165: 317-326.
CrossRef | Gscholar
(20)
Hytteborn H, Maslov AA, Nazimova DI, Rysin LP (2005)
Boreal forests of Eurasia. In: “Coniferous forests, ecosystems of the world” (Andersson F ed). Elsevier, Amsterdam, Netherlands, pp. 23-99.
Online | Gscholar
(21)
LEGMC (2016)
Climate of Latvia. Web site.
Online | Gscholar
(22)
Lehtonen A, Palviainen M, Ojanen P, Kalliokoski T, Nöjd P, Kukkola M, Penttilä T, Mäkipää R, Leppälammi-Kujansuu J, Helmisaari HS (2016)
Modelling fine root biomass of boreal tree stands using site and stand variables. Forest Ecology and Management 359: 361-369.
CrossRef | Gscholar
(23)
Levers C, Verkerk PJ, Müller D, Verburg PH, Butsic V, Leitão Lindner M, Kuemmerle T (2014)
Drivers of forest harvesting intensity patterns in Europe. Forest Ecology and Management 315: 160-172.
CrossRef | Gscholar
(24)
Liepins J, Lazdins A, Liepins K (2018)
Equations for estimating above- and belowground biomass of Norway spruce, Scots pine, birch spp. and European aspen in Latvia. Scandinavian Journal of Forest Research 33: 58-70.
CrossRef | Gscholar
(25)
Litton CM, Ryan MG, Tinker DB, Knight DH (2003)
Belowground and aboveground biomass in young postfire logepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33 (2): 351-363.
CrossRef | Gscholar
(26)
López-Serrano PM, López-Sánchez CA, Díaz-Varela RA, Corral-Rivas JJ, Solís-Moreno R, Vargas-Larreta B, Gonzalez JG (2015)
Estimating biomass of mixed and uneven-aged forests using spectral data and a hybrid model combining regression trees and linear models. iForest 9: 226-234.
CrossRef | Gscholar
(27)
Makkonen K, Helmisaari HS (1998)
Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. Forest Ecology and Management 102: 283-290.
CrossRef | Gscholar
(28)
Makkonen K, Helmisaari HS (2001)
Fine-root biomass and production in Scots pine stands in relation to stand age. Tree Physiology 21: 193-198.
CrossRef | Gscholar
(29)
Muukkonen P, Mäkipää R (2006)
Biomass equations for European trees: addendum. Silva Fennica 40 (4): 763-773.
Online | Gscholar
(30)
Neumann M, Moreno A, Mues V, Härkönen S, Mura M, Bouriaud O, Lang M, Achten WMJ, Thivolle-Cazat A, Bronisz K, Merganič J, Decuyper M, Alberdi I, Astrup R, Mohren F, Hasenauer H (2016)
Comparison of carbon estimation methods in European forests. Forest Ecology and Management 361: 397-420.
CrossRef | Gscholar
(31)
Ohashi M, Kilpeläinen J, Finér L, Risch AC, Domisch T, Neuvonen S, Niemelä P (2007)
The effect of red wood ant (Formica rufa group) mounds on root biomass, density, and nutrient concentrations in boreal managed forests. Journal of Forest Research 12 (2): 113-119.
CrossRef | Gscholar
(32)
Oleksyn J, Reich PB, Chalupka W, Tjoelker MG (1999)
Differential above- and below-ground biomass accumulation of European Pinus sylvestris 127 populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research 14: 7-17.
CrossRef | Gscholar
(33)
Pajtík J, Konôpka B, Lukac M (2008)
Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management 256: 1096-1103.
CrossRef | Gscholar
(34)
Petersson H, Holm S, Ståhl G, Alger D, Fridman J, Lehtonen A, Lundström A, Mäkipää R (2012)
Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass - A comparative study. Forest Ecology and Management 270: 78-84.
CrossRef | Gscholar
(35)
R Core Team (2016)
R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Web site.
Online | Gscholar
(36)
Repola J (2009)
Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica 43 (4): 625-647.
CrossRef | Gscholar
(37)
Sanford RLJ, Cuevas E (1996)
Root growth and rhizosphere interactions in tropical forests. In: “Tropical Forest Plant Ecophysiology” (Mulkey SS, Chazdon RL, Smith AP eds). Chapman and Hall, New York, USA, pp. 268-300.
CrossRef | Gscholar
(38)
Seidl R, Schelhaas MJ, Rammer W, Johannes V (2014)
Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change 4: 806-810.
CrossRef | Gscholar
(39)
Shinozaki K, Yoda K, Hozumi K, Kira T (1964)
A quantitative analysis of plant form - The pipe model theory. I. Basic analyses. Japanese Journal of Ecology 14: 97-104.
Gscholar
(40)
Sochacki SJ, Ritson P, Brand B, Harper RJ, Dell B (2017)
Accuracy of tree biomass sampling methodologies for carbon mitigation projects. Ecological Engineering 98: 264-274.
CrossRef | Gscholar
(41)
Thomas SC, Martin AR (2012)
Carbon content of tree tissues: a synthesis. Forests 3: 332-352.
CrossRef | Gscholar
(42)
Uri V, Varik M, Aossar J, Kanal A, Kukumägi M, Lõhmus K (2012)
Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecology and Management 267: 117-126.
CrossRef | Gscholar
(43)
Uri V, Tullus H, Lõhmus K (2002)
Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forest Ecology and Management 161: 161-179.
CrossRef | Gscholar
(44)
Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996)
Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10 (4): 231-238.
CrossRef | Gscholar
(45)
Varik M, Aosaar J, Ostonen I, Lõhmus K, Uri V (2013)
Carbon and nitrogen accumulation in belowground tree biomass in a chronosequence of silver birch stands. Forest Ecology and Management 302: 62-70.
CrossRef | Gscholar
(46)
Xiao CW, Ceulemans R (2004)
Algometric relationships for below- and aboveground biomass of young Scots pines. Forest Ecology and Management 203: 177-186.
CrossRef | Gscholar
(47)
Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005)
Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4, The Finish Forest Research Institute, Tampere, Finland, pp. 63.
Online | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info