*

Richness and abundance of granivorous vertebrates determine acorn removal patterns in a human modified oak forest

Felipe Barragán (1)   , Ernesto I Badano (2), David Douterlungne (1), Joel Flores (2)

iForest - Biogeosciences and Forestry, Volume 11, Issue 2, Pages 329-337 (2018)
doi: https://doi.org/10.3832/ifor2216-011
Published: Apr 18, 2018 - Copyright © 2018 SISEF

Research Articles


Most forests of the Earth have been affected by human activities and this can alter the plant-animal interactions on which depend the functional integrity of these ecosystems. In this study, we assessed the relationships between acorn removal rates and the richness and abundance of granivorous vertebrates along a forest-edge-clearing gradient. We also evaluated whether removal rates differed among oak species with different acorn size. To this purpose, a field experiment was performed including acorns of five oak species, which were exposed to seed consumers in the three different habitats (forest interior, man-made clearings and the edge between these habitats). The experimental units consisted in five paper trays containing 50 acorns of each oak species located at different distances from the edge towards the forest and the man-made clearing (0, 20 and 50 m). Experimental sites were equipped with phototraps to record the identity of the visiting granivorous vertebrates. Richness and abundance of granivores increased from the edge towards the forest interior, while the converse patterns were observed in the man-made clearing. For most oak species, acorn removal patterns was positively correlated with richness and abundances of granivores, though in all habitats small-sized acorns were removed much faster and in larger proportions than big-sized acorns. Although these results are specific for the study site, they suggest that man-made clearings reduce the richness and abundance of granivores, thus negatively affecting the secondary dispersion of zoochoric tree species towards open habitats. Further, it also seems that large-seeded oak species face greater dispersal limitations than small-seeded oaks, because of the lack of animals able to scatter them from the forest to the clearings.

  Keywords


Acorn Size, Forest Gaps, Land Use Change, Man-made Clearing, Species Diversity

Authors’ address

(1)
Felipe Barragán
David Douterlungne
CONACYT-IPICYT, División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4ª Sección, C.P. 78216, San Luis Potosí, SLP (México)
(2)
Ernesto I Badano
Joel Flores
IPICYT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4ª Sección, C.P. 78216, San Luis Potosí, SLP (México)

Corresponding author

 

Citation

Barragán F, Badano EI, Douterlungne D, Flores J (2018). Richness and abundance of granivorous vertebrates determine acorn removal patterns in a human modified oak forest. iForest 11: 329-337. - doi: 10.3832/ifor2216-011

Academic Editor

Gianfranco Minotta

Paper history

Received: Sep 05, 2016
Accepted: Jan 21, 2018

First online: Apr 18, 2018
Publication Date: Apr 30, 2018
Publication Time: 2.90 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 5096
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 3944
Abstract Page Views: 197
PDF Downloads: 737
Citation/Reference Downloads: 17
XML Downloads: 201

Web Metrics
Days since publication: 546
Overall contacts: 5096
Avg. contacts per week: 65.33

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Aug 2019)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Bossema I (1979)
Jays and oaks: An eco-ethological study of a symbiosis. Behaviour 70: 1-117.
CrossRef | Gscholar
(2)
Bustamante RO, Badano EI, Pickett STA (2012)
Impacts of land use change on seed removal patterns of native and exotic species in a forest landscape. Community Ecology 13: 171-177.
CrossRef | Gscholar
(3)
Cadenasso ML, Pickett STA (2000)
Linking forest edge structure to edge function: mediation of herbivore damage. Journal of Ecology 88: 31-44.
CrossRef | Gscholar
(4)
Camacho-Escobar MA, Jiménez-Hidalgo E, Arroyo-Ledezma J, Sánchez-Bernal EI, Pérez-Lara E (2011)
Historia natural, domesticación y distribución del guajolote (Meleagris gallopavo) en México [Natural history, domestication and distribution of the turkey (Meleagris gallopavo) in Mexico]. Universidad y Ciencias 27: 351-360. [in Spanish with English summary]
Gscholar
(5)
Canale GR, Peres CA, Guidorizzi CE, Ferreira-Gatto CA, Kierulff MCM (2012)
Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS ONE 7 (8): e41671.
CrossRef | Gscholar
(6)
Caro T, Sherman PW (2012)
Vanishing behaviors. Conservation Letters 5: 159-166.
CrossRef | Gscholar
(7)
Cordeiro NJ, Howe HF (2001)
Low recruitment of trees dispersed by animals in African forest fragments. Conservation Biology 15: 1733-1741.
CrossRef | Gscholar
(8)
De Blois S, Domon G, Bouchard A (2002)
Landscape issues in plant ecology. Ecography 25: 244-256.
CrossRef | Gscholar
(9)
Donoso DS, Grez AA, Simonetti JA (2003)
Effects of forest fragmentation on the granivory of differently sized seeds. Biological Conservation 115: 63-70.
CrossRef | Gscholar
(10)
Díaz I, Papic C, Armesto JJ (1999)
An assessment of post-dispersal seed predation in temperate rain forest fragments in Chiloe Island, Chile. Oikos 87: 228-238.
CrossRef | Gscholar
(11)
FAO (2010)
Global forest resources assessment. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 340.
Gscholar
(12)
Fortin MJ, Jacquez GM (2000)
Randomization tests and spatially auto-correlated data. Bulletin of the Ecological Society of America 81: 201-205.
Online | Gscholar
(13)
García E (2004)
Modificaciones al sistema de clasificacion climatica de Koppen [Modifications to the Köppen climate classification system] (5th edn). Universidad Nacional Autóma de México, México City, pp. 91. [in Spanish]
Gscholar
(14)
González-Salvatierra C, Badano EI, Flores J, Rodas JP (2013)
Germination, infestation, and viability in acorns of Quercus polymorpha (Schltdl. & Cham.) after 1-year storage. Revista Chapingo Serie Ciencias Forestales y del Ambiente 19: 351-362.
CrossRef | Gscholar
(15)
Gribko LS, Jones WE (1995)
Test of the float method of assessing northern red oak acorn condition. Tree Planters’ Notes 46: 143-147.
Online | Gscholar
(16)
Hood GM (2011)
PopTools ver. 3.2. Web site.
Online | Gscholar
(17)
Kaplan EL, Meier P (1958)
Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53: 457-481.
CrossRef | Gscholar
(18)
Kattan G, Alvarez-López H (1996)
Preservation and management of biodiversity in fragmented landscapes in the Colombian Andes. In: “Forest Patches in Tropical Landscapes” (Schelhas J, Greenberg R eds). Island Press, Washington, DC, USA, pp. 3-18.
Online | Gscholar
(19)
Kellner KF, Lichti NI, Swihart RK (2016)
Midstory removal reduces effectiveness of oak (Quercus) acorn dispersal by small mammals in the Central Hardwood Forest region. Forest Ecology and Management 375: 182-190.
CrossRef | Gscholar
(20)
Kirkpatrick RL, Pekins PJ (2002)
Nutritional value of acorns for wildlife. In: “Oak Forest Ecosystems: Ecology and Management for Wildlife” (McShea WJ, Healy WM eds). Johns Hopkins University Press, Baltimore, USA, pp. 173-181.
Gscholar
(21)
Kleinbaum DG, Klein M (2012)
Survival analysis (3rd edn). Springer, New York, USA, pp. 700.
Online | Gscholar
(22)
Kollmann J, Buschor M (2003)
Edges effects on seed predation by rodents in deciduous forests of northern Switzerland. Plant Ecology 164: 249-261.
CrossRef | Gscholar
(23)
López-Barrera F, Manson RH (2006)
Ecology of acorn dispersal by small mammals in montane forests of Chiapas, Mexico. In: “Ecology and Conservation of Neotropical Montane Oak Forests” (Kappelle M ed). Springer, Berlin, Germany, pp. 165-176.
CrossRef | Gscholar
(24)
López-Barrera F, Newton A, Manson R (2005)
Edge effects in a tropical montane forest mosaic: experimental tests of post-dispersal acorn removal. Ecological Research 20: 31-40.
CrossRef | Gscholar
(25)
Martínez M (1981)
Los encinos de México [Oaks of Mexico] (2nd edn). Comisión Forestal del Estado de Michoacán, Morelia, México, pp. 358. [in Spanish]
Gscholar
(26)
McCormick JT, Meiners SJ (2000)
Season and distance from forest-old field edge affect seed predation by white-footed mice. Northeastern Naturalist 7: 7-16.
CrossRef | Gscholar
(27)
Márquez-Olivas M, García-Moya E, González-Rebeles C (2005)
Composición de la dieta del guajolote silvestre (Meleagris gallopavo mexicana, Gould, 1856) reintroducido en Sierra Fría, Aguascalientes, México [Diet composition of reintroduced wild turkey (Meleagris gallopavo mexicana, Gould, 1856) in Sierra Fria, Aguascalientes, Mexico]. Veterinaria México 36: 395-409. [in Spanish with English summary]
Gscholar
(28)
Muñoz A, Bonal R (2011)
Muñoz A, Bonal R (2011) Linking seed dispersal to cache protection strategies. Journal of Ecology 99: 1016-1025.
CrossRef | Gscholar
(29)
Nixon KC (1993)
The genus Quercus in México. In: “Biological Diversity of Mexico: Origins and Distribution” (Ramamoorthy TP, Bye R, Lot A, Fa J eds). Oxford University Press, New York, USA, pp. 447-548.
Gscholar
(30)
Paul J, Crutzen PJ (2006)
The Anthropocene. In: “Earth System Science in the Anthropocene” (Ehlers E, Krafft T eds). Springer, Berlin, Germany, pp. 13-18.
CrossRef | Gscholar
(31)
R Development Core Team (2016)
R: a language and environment for statistical computing. R Statistical Foundation, Vienna Austria.
Online | Gscholar
(32)
Ramos-Palacios CR, Badano EI (2014)
The relevance of burial to evade acorn predation in an oak forest affected by habitat loss and land use changes. Botanical Sciences 92: 299-308.
CrossRef | Gscholar
(33)
Ramos-Palacios C, Badano E, Flores J, Flores-Cano J, Flores-Flores J (2014)
Distribution patterns of acorns after primary dispersion in a fragmented oak forest and their consequences on predators and dispersers. European Journal of Forest Research 133: 391-404.
CrossRef | Gscholar
(34)
Redford KH (1992)
The empty forest. BioScience 42: 412-422.
CrossRef | Gscholar
(35)
Rey-Benayas JM, Martínez-Baroja L, Pérez-Camacho L, Villar-Salvador P, Holl KD (2015)
Predation and aridity slow down the spread of 21-year-old planted woodland islets in restored Mediterranean farmland. New Forests 46: 841-853.
CrossRef | Gscholar
(36)
Rizkalla CE, Swihart RK (2007)
Explaining movement decisions of forest rodents in fragmented landscapes. Biological Conservation 140: 339-348.
CrossRef | Gscholar
(37)
Rosete-Vergés FA, Pérez-Damián JL, Villalobos-Delgado M, Navarro-Salas EN, Salinas-Chávez E, Remond-Noa R (2014)
El avance de la deforestación en México 1976-2007 [The progress of the deforestation in Mexico 1976-2007]. Madera y Bosques 20: 21-35. [in Spanish]
CrossRef | Gscholar
(38)
Schleimann SA, Bockheim JG (2011)
Methods for studying treefall gaps: a review. Forest Ecology and Management 261: 1143-1151.
CrossRef | Gscholar
(39)
Slade NA (1999)
Randomization tests using standard statistical software. Bulletin of the Ecological Society of America 80: 179-180.
CrossRef | Gscholar
(40)
Smallwood PD, Steele MA, Faeth SH (2001)
The ultimate basis of the caching preferences of rodents and the oak-dispersal syndrome: tannins, insects, and seed germination. American Zoologist 41: 840-851.
CrossRef | Gscholar
(41)
Solé RV, Montoya M (2001)
Complexity and fragility in ecological networks. Proceedings of the Royal Society of London B 268: 2039-2045.
CrossRef | Gscholar
(42)
Sork VL (1983)
Distribution of pignut hickory (Carya glabra) along a forest to edge transect, and factors affecting seedling recruitment. Bulletin of the Torrey Botanical Club 110: 494-506.
CrossRef | Gscholar
(43)
Steele MA, Smallwood PD (2002)
Acorn dispersal by birds and mammals. In: “Oak Forest Ecosystems: Ecology and Management for Wildlife” (McShea WJ, Healy WM eds). Johns Hopkins University Press, Baltimore, USA, pp. 182-195.
Gscholar
(44)
Steele MA, Smallwood PD, Spunar A, Nelsen E (2001)
The proximate basis of the oak dispersal syndrome: Detection of seed dormancy by rodents. American Zoologist 41: 852-864.
CrossRef | Gscholar
(45)
Steffen DE, Lafon NW, Norman GW (2002)
Turkey, acorns and oaks. In: “Oak Forest Ecosystems: Ecology and Management for Wildlife” (McShea WJ, Healy WM eds). Johns Hopkins University Press, Baltimore, USA, pp. 241-255.
Gscholar
(46)
Swihart RK, Atwood TC, Goheen JR, Scheiman DM, Munroe KE, Gehring TM (2003)
Predicting patch occupancy of North American mammals: Is patchiness in the eye of the beholder? Journal of Biogeography 30: 1259-1279.
CrossRef | Gscholar
(47)
Vander Wall SB (2010)
How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philosophical Transactions of the Royal Society of London B 365: 989-997.
CrossRef | Gscholar
(48)
Webb SL, Willson MF (1985)
Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds. Oecologia 67: 150-153.
CrossRef | Gscholar
(49)
Wolff JO (1996)
Population fluctuations of mast-eating rodents are correlated with production of acorns. Journal of Mammalogy 77: 850-856.
CrossRef | Gscholar
(50)
Wright SJ (2003)
The myriad effects of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology, Evolution and Systematics 6: 73-86.
CrossRef | Gscholar
(51)
Zavala-Chávez F (2001)
Introducción a la ecología de la regeneración natural de encinos [Introduction to the ecology of the natural regeneration of oaks]. Universidad Autónoma Chapingo, Texcoco, México, pp. 94. [in Spanish]
Gscholar
 

This website uses cookies to ensure you get the best experience on our website