*
 

iForest - Biogeosciences and Forestry

*

Comparison of parametric and nonparametric methods for modeling height-diameter relationships

Zdenek Adamec   , Karel Drápela

iForest - Biogeosciences and Forestry, Volume 10, Issue 1, Pages 1-8 (2016)
doi: https://doi.org/10.3832/ifor1928-009
Published: Oct 19, 2016 - Copyright © 2016 SISEF

Research Articles


This paper focuses on the problem of regionalization of the height-diameter model at the stand level. To this purpose, we selected two different modeling techniques. As a parametric method, we chose a linear mixed effects model (LME) with calibrated conditional prediction, whose calibration was carried out on randomly selected trees either close to mean diameter or within three diameter intervals throughout the diameter range. As a nonparametric method, the technique of classification and regression trees (CART) was chosen. These two methods were also compared with the local model created by ordinary least squares regression. The results show that LME with calibrated conditional prediction based on measurements of height at three diameter intervals provided results very close to the local model, especially when six to nine trees are measured. We recommend this technique for the regionalization of the global model. The CART method provided worse results than LME, with the exception of parameters of the residual distribution. Nevertheless, the latter approach is very user-friendly, as the regression tree creation and especially its interpretation are relatively simple, and could be recommended when larger deviations are allowed.

  Keywords


Calibration, Classification and Regression Trees, Hierarchical Structure, Linear Mixed Effects Model, Spatial Heterogeneity

Authors’ address

(1)
Zdenek Adamec
Karel Drápela
Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, 613 00 (Czech Republic)

Corresponding author

 
Zdenek Adamec
zdenek.adamec@mendelu.cz

Citation

Adamec Z, Drápela K (2016). Comparison of parametric and nonparametric methods for modeling height-diameter relationships. iForest 10: 1-8. - doi: 10.3832/ifor1928-009

Academic Editor

Piermaria Corona

Paper history

Received: Nov 24, 2015
Accepted: Jul 07, 2016

First online: Oct 19, 2016
Publication Date: Feb 28, 2017
Publication Time: 3.47 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 13746
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 10287
Abstract Page Views: 607
PDF Downloads: 2143
Citation/Reference Downloads: 47
XML Downloads: 662

Web Metrics
Days since publication: 1471
Overall contacts: 13746
Avg. contacts per week: 65.41

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Jun 2020)

Total number of cites (since 2017): 5
Average cites per year: 1.25

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Aakala T, Fraver S, Amato AW, Palik BJ (2013)
Influence of competition and age on tree growth in structurally complex old-growth forests in Northern Minnesota, USA. Forest Ecology and Management 308: 128-135.
CrossRef | Gscholar
(2)
Adame P, Del Rio M, Cañellas I (2008)
A mixed nonlinear height-diameter model for Pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management 256: 88-98.
CrossRef | Gscholar
(3)
Aertsen W, Kint V, Van Orshoven J, Ozkan K, Muys B (2010)
Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling 221: 1119-1130.
CrossRef | Gscholar
(4)
Akaike H (1973)
Information theory and an extension of the maximum likelihood principle. In: Proceedings of the “2nd International Symposium on Information Theory” (Petrov BN, Csáki F eds). Budapest (Hungary) 2-8 September 1973. Akademiai Kiado, Budapest, Hungary, pp. 268-281.
Gscholar
(5)
Anderson MG, Ferree CE, Olivero AP, Zhao F (2010)
Assessing floodplain forests: using flow modeling and remote sensing to determine the best places for conservation. Natural Areas Journal 30: 39-52.
CrossRef | Gscholar
(6)
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984)
Classification and regression trees. Chapman and Hall/CRC, Boca Raton, FL, USA, pp. 368.
Gscholar
(7)
Budhathoki CB, Lynch TB, Guldin JM (2008)
Nonlinear mixed modeling of basal area growth for shortleaf pine. Forest Ecology and Management 255: 3440-3446.
CrossRef | Gscholar
(8)
Calama R, Montero G (2005)
Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach. Silva Fennica 39: 37-54.
CrossRef | Gscholar
(9)
Castaño-Santamaría J, Crecente-Campo F, Fernández-Martínez JL, Barrio-Anta M, Obeso JR (2013)
Tree height prediction approaches for uneven-aged beech forests in northwestern Spain. Forest Ecology and Management 307: 63-73.
CrossRef | Gscholar
(10)
Crecente-Campo F, Tomé M, Soares P, Diéguez-Aranda U (2010)
A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management 259: 943-952.
CrossRef | Gscholar
(11)
De’ath G, Fabricius KE (2000)
Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178-3192.
CrossRef | Gscholar
(12)
Dobbertin M, Biging GS (1998)
Using the non-parametric classifier CART to model forest tree mortality. Forest Science 44: 507-516.
Online | Gscholar
(13)
Drápela K (2011)
Regresní modely a možnosti jejich využití v lesnictví [The regression models and options of their utilization in the forestry]. Mendel University in Brno, Brno, Czech Republic, pp. 236. [in Czech]
Gscholar
(14)
Eerikäinen K (2003)
Predicting the height-diameter pattern of planted Pinus kesiya stands in Zambia and Zimbabwe. Forest Ecology and Management 175: 355-366.
CrossRef | Gscholar
(15)
Fan Z, Kabrick JM, Shifley SR (2006)
Classification and regression tree based survival analysis in oak-dominated forests of Missouri’s Ozark highlands. Canadian Journal of Forest Research 36: 1740-1748.
CrossRef | Gscholar
(16)
Ferguson IS, Leech JW (1978)
Generalized least squares estimation of yield functions. Forest Science 24: 27-42.
Online | Gscholar
(17)
Fox JC, Ades PK, Bi H (2001)
Stochastic structure and individual-tree growth models. Forest Ecology and Management 154: 261-276.
CrossRef | Gscholar
(18)
Gómez C, Wulder MA, Montes F, Delgado JA (2012)
Modeling forest structural parameters in the Mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART). Remote Sensing 4: 135-159.
CrossRef | Gscholar
(19)
Gregoire TG, Schabenberger O, Barrett JP (1995)
Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent plot measurements. Canadian Journal of Forest Research 25: 137-156.
CrossRef | Gscholar
(20)
Huang S, Price D, Titus SJ (2000)
Development of ecoregion-based height-diameter models for white spruce in boreal forest. Forest Ecology and Management 129: 125-141.
CrossRef | Gscholar
(21)
Kangas A, Haara A (2012)
Comparison of nonspatial and spatial approaches with parametric and nonparametric methods in prediction of tree height. European Journal of Forest Research 131: 1771-1782.
CrossRef | Gscholar
(22)
Legendre P (1993)
Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659-1673.
CrossRef | Gscholar
(23)
Levakovic A (1935)
Analytical form of growth laws. Glasnik za sumske pokuse 4: 189-282.
Gscholar
(24)
Lu J, Zhang L (2012)
Evaluation of structure specification in linear mixed models for modeling the spatial effects in tree height-diameter relationships. Annals of Forest Research 56: 137-148.
Online | Gscholar
(25)
Meyer HA (1940)
A mathematical expression for height curves. Journal of Forestry 38: 415-420.
Online | Gscholar
(26)
Mehtätalo L (2004)
A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research 34: 131-140.
CrossRef | Gscholar
(27)
Michailov I (1943)
Zahlenmäßiges Verfahren für die Ausführung der Bestandeshöhenkurven [Numerical estimation of stand height curves]. Forstwissenschaftliches Centralblatt und Tharandter Forstliches Jahrbuch 6: 273-279. [in German]
Gscholar
(28)
Miguel S, Guzmán G, Pukkala T (2013)
A comparison of fixed- and mixed-effects modelling in tree growth and yield prediction of an indigenous Neotropical species (Centrolobium tomentosum) in a plantation system. Forest Ecology and Management 291: 249-258.
CrossRef | Gscholar
(29)
Moisen GG, Frescino TS (2002)
Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling 157: 209-225.
CrossRef | Gscholar
(30)
Näslund M (1947)
Functions and tables for computing the cubic volume of standing trees: pine, spruce and birch in Southern Sweden and in the whole of Sweden. Reports of the Forest Research Institute of Sweden 36, Stockholm, Sweden, pp. 81.
Gscholar
(31)
Petterson H (1955)
Barrskogens volymproduktion [Volume production of coniferous forests]. Meddelanden från Statens skogsforskningsinstitut, Stockholm, Sweden, pp. 391. [in Swedish]
Gscholar
(32)
Petráš R, Pajtík J (1991)
Sústava česko-slovenských objemových tabuliek drevín [Volume tables for the Czech and Slovak Republic]. Lesnický časopis - Forestry Journal 37: 49-56. [in Slovak]
Gscholar
(33)
Räty M, Kangas A (2008)
Localizing general models with classification and regression trees. Scandinavian Journal of Forest Research 23: 419-430.
CrossRef | Gscholar
(34)
R Core Team (2015)
R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria.
Online | Gscholar
(35)
Rejwan C, Collins LJ, Brunner LJ, Shuter BJ, Ridgway MS (1999)
Tree regression analysis on the nesting habitat of smallmouth bass. Ecology 80: 341-348.
CrossRef | Gscholar
(36)
Robinson GK (1991)
That BLUP is a good thing: the estimation of random effects. Statistical Science 6: 15-32.
CrossRef | Gscholar
(37)
Schmidt M, Kiviste A, Von Gadow K (2011)
A spatially explicit height-diameter model for Scots pine in Estonia. European Journal of Forest Research 130: 303-315.
CrossRef | Gscholar
(38)
Sharma M, Parton J (2007)
Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management 249: 187-198.
CrossRef | Gscholar
(39)
Shifley SR, Fan Z, Kabrick JM, Jensen RG (2006)
Oak mortality risk factors and mortality estimation. Forest Ecology and Management 229: 16-26.
CrossRef | Gscholar
(40)
Sironen S, Kangas A, Maltamo M, Kangas J (2003)
Estimating individual tree growth with nonparametric methods. Canadian Journal of Forest Research 33: 444-449.
CrossRef | Gscholar
(41)
Soares P, Tomé M (2002)
Height-diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecology and Management 166: 99-109.
CrossRef | Gscholar
(42)
Trincado G, VanderSchaaf CL, Burkhart HE (2007)
Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. European Journal of Forest Research 126: 253-262.
CrossRef | Gscholar
(43)
Van Laar A, Akça A (2007)
Forest mensuration. Springer, Dordrecht, Netherlands, pp. 389.
Online | Gscholar
(44)
Vonesh EF, Chiinchilli VM (1997)
Linear and nonlinear models for the analysis of repeated measurements. Marcel Dekker, New York, NY, USA, pp. 560.
Gscholar
(45)
Weiss J (2007)
Environmental studies 562: Statistics for Environmental Science. Lecture notes, web site.
Online | Gscholar
(46)
Yang Y, Huang S (2011)
Comparison of different methods for fitting nonlinear mixed forest models and for making predictions. Canadian Journal of Forest Research 41: 1671-1686.
CrossRef | Gscholar
(47)
Zhang L, Bi H, Cheng P, Davis CJ (2004)
Modeling spatial variation in tree diameter-height relationships. Forest Ecology and Management 189: 317-329.
CrossRef | Gscholar
(48)
Zhang L, Gove JH, Heath LS (2005)
Spatial residual analysis of six modeling techniques. Ecological Modelling 186: 154-177.
CrossRef | Gscholar
(49)
Zhang L, Ma Z, Guo L (2008)
Spatially assessing model errors of four regression techniques for three types of forest stands. Forestry 81: 209-225.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info