*
 

iForest - Biogeosciences and Forestry

*

Below- and above-ground biomass, structure and patterns in ancient lowland coppices

Tomás Vrška (1-2), David Janík (1)   , Marcela Pálková (1-2), Dusan Adam (1), Jan Trochta (1)

iForest - Biogeosciences and Forestry, Volume 10, Issue 1, Pages 23-31 (2016)
doi: https://doi.org/10.3832/ifor1839-009
Published: Nov 06, 2016 - Copyright © 2016 SISEF

Research Articles

Collection/Special Issue: IUFRO division 8.02 - Mendel University Brno (Czech Republic) 2015
Coppice forests: past, present and future
Guest Editors: Tomas Vrska, Renzo Motta, Alex Mosseler


Ancient coppice woods are areas that reflect long-term human influence and contain high species biodiversity. In this type of forest we aimed to: (i) analyze the below- and above ground biomass of stools and estimate the age of largest stool; (ii) define a “zone of interference” for coppices; (iii) describe and classify variability in the shape and size of coppice stools; (iv) define the specific characteristics of the spatial distribution of stems and stools. The study was conducted in the Podyjí National Park, Czech Republic, where two old oak coppice stands were fully stem mapped: Lipina (3.90 ha) and Šobes (2.37 ha). Cores were processed using TimeTable and PAST4. Below- and above-ground biomass of the largest stools was computed using the data from terrestrial laser scanner. Tree zones of influence were analyzed with V-Late landscape analysis tools using Shape Index. The pair correlation function and L function were used to describe the spatial patterns of trees with DBH ≥ 7 cm, and the null model of Complete Spatial Randomness and Matérn cluster process were tested. For a modeled old stool, we estimated a ratio of 2:1 for above/below ground volume with no reduction of below ground biomass regarding the hollow roots. The age of the largest stool was estimated 825 ± 145 (SE) years. An “Inner Zone of Influence” was defined, with a total area covering 323 m2 ha-1. The median area of this zone in both plots was 0.40 m2 for all trees, 0.23 m2 for singles and 0.87 m2 for stools. The Matérn cluster process was successfully fitted to our empirical data. In this model, the mean cluster radius ranged between 1.9 to 2.1 m and mean number of points per cluster was 1.7 and 1.9. The most prevalent characteristics of these ancient oak coppices were their compact shape and clustered spatial distribution up to 10 m.

  Keywords


Oak, Stools, Spatial Patterns, Root System, Terrestrial Laser Scanning, Ancient Coppices

Authors’ address

(1)
Tomás Vrška
David Janík
Marcela Pálková
Dusan Adam
Jan Trochta
Silva Tarouca Research Institute, Department of Forest Ecology, Lidická 25/27, 602 00 Brno (Czech Republic)
(2)
Tomás Vrška
Marcela Pálková
Faculty of Forestry and Wood Technology, Mendel University in Brno, Department of Silviculture, ZemÄ›dÄ›lská 3, 613 00 Brno (Czech Republic)

Corresponding author

 
David Janík
david.janik@vukoz.cz

Citation

Vrška T, Janík D, Pálková M, Adam D, Trochta J (2016). Below- and above-ground biomass, structure and patterns in ancient lowland coppices. iForest 10: 23-31. - doi: 10.3832/ifor1839-009

Academic Editor

Francesco Ripullone

Paper history

Received: Aug 31, 2015
Accepted: Aug 12, 2016

First online: Nov 06, 2016
Publication Date: Feb 28, 2017
Publication Time: 2.87 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 14781
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 11360
Abstract Page Views: 535
PDF Downloads: 2138
Citation/Reference Downloads: 74
XML Downloads: 674

Web Metrics
Days since publication: 1444
Overall contacts: 14781
Avg. contacts per week: 71.65

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Jun 2020)

Total number of cites (since 2017): 6
Average cites per year: 1.50

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Baddeley A (2008)
Analysing spatial point patterns in R. CSIRO, Australia. pp. 232. -
Online | Gscholar
(2)
Baddeley A, Turner R (2005)
Spatstat: an R package for analysing spatial point patterns. Journal of Statistic Software 12: 1-42.
Gscholar
(3)
Barbaroux C, Bréda N, Dufrêne E (2003)
Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytologist 157 (3): 605-615.
CrossRef | Gscholar
(4)
Bauhus J (2009)
Rooting patterns of old-growth forest: is aboveground structural and functional diversity mirrored belowground? In: “Old-Growth Forests: Function, Fate and Value” (Wirth C, Gleixner G, Heimann M eds). Springer, Berlin, Germany, pp. 211-229.
CrossRef | Gscholar
(5)
Bédéneau M, Pagés L (1984)
Etude des cernes d’accroissement ligneux du système racinaire d’arbres traités en taillis. [Studies about tree rings in coppice root system]. Annales des sciences forestières 41: 59-68. [in French]
CrossRef | Gscholar
(6)
Besag J (1977)
Contribution to the discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society (Series B) 39: 193-195.
Gscholar
(7)
Bruckman VJ, Yan S, Hochbichler E, Glatzel G (2011)
Carbon pools and temporal dynamics along a rotation period in Quercus dominated high forest and coppice with standards stands. Forest Ecology and Management 262: 1853-1862.
CrossRef | Gscholar
(8)
Casper BB, Schenk HJ, Jackson RB (2003)
Defining a plant’s belowground zone of influence. Ecology 84: 2313-2321.
CrossRef | Gscholar
(9)
Chytry M, Vicherek J (1995)
Lesní vegetace NP Podyjí. [The Forest Vegetation in Podyjí National Park]. Academia, Praha, Czech Republic. pp. 166. [in Czech]
Gscholar
(10)
Coles JM (1978)
Man and landscape in the Somerset Levels. In: “The Effect of Man on the Landscape: the Lowland Zone” (Limbrey S, Evans JG, eds). CBA Research Report No. 21, Council for British Archaeology, London, UK, pp. 86-89.
Gscholar
(11)
Copini P, Sass-Klaassen U, Den Ouden J (2010)
Coppice fingerprints in growth patterns of pedunculate oak (Quercus robur). In: “TRACE - Tree Rings in Archaeology, Climatology and Ecology” (Levanic T, Gricar J, Hafner P, Krajnc R, Jagodic S, Gärtner H, Heinrich I, eds). Otočec, Slovenia, pp. 54-60.
Online | Gscholar
(12)
Crow TR (1992)
Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings. Oecologia 91: 192-200.
CrossRef | Gscholar
(13)
Dey D (2002)
The ecological basis for oak silviculture in Eastern North America. In: “Oak Forest Ecosystems: Ecology and Management for Wildlife” (McShea WJ, Healy WM eds). The Johns Hopkins University Press, Baltimore, USA, pp. 60-79.
Gscholar
(14)
Diggle PJ (2003)
Statistical analysis of spatial point patterns (2nd edn). Hodder Arnold, London, UK, pp. 159.
Gscholar
(15)
Freeman EA, Ford ED (2002)
Effects of data quality on analysis of ecological pattern using the K(d) statistical function. Ecology 83: 35-46.
Gscholar
(16)
Gaertner H (2001)
Holzanatomische Analyse diagnostischer Merkmale einer Freilegungsreaktion in Jahrringen von Koniferenwurzeln zur Rekonstruktion geomorphologischer Prozesse. [Wood-anatomical analysis of diagnostic characteristics of an exposure reaction in tree rings of coniferous roots to reconstruct geomorphological processes]. Rheinischen Friedrich-Wilhelms-Universität, Bonn, Germany, pp. 118. [in German]
Gscholar
(17)
Haneca K, Boeren I, Acker J, Beeckman H (2005)
Dendrochronology in suboptimal conditions: tree rings from medieval oak from Flanders (Belgium) as dating tools and archives of past forest management. Vegetation History and Archaeobotany 15: 137-144.
CrossRef | Gscholar
(18)
Haneca K, Cufar K, Beeckman H (2009)
Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science 36: 1-11.
CrossRef | Gscholar
(19)
Hölscher D, Schade E, Leuschner C (2001)
Effects of coppicing in temperate deciduous forests on ecosystem nutrient pools and soil fertility. Basic and Applied Ecology 164: 155-164.
CrossRef | Gscholar
(20)
Itô H, Hino T, Sakuma D (2012)
Species abundance in floor vegetation of managed coppice and abandoned forest. Forest Ecology and Management 269: 99-105.
CrossRef | Gscholar
(21)
Janík D, Vrška T, Samonil P, Unar P, Adam D, Hort L, Král K (2007)
Structure and Ecology of oak woods in the Podyjí National Park as exemplified by the Lipina locality. Thayensia 7: 175-206.
Gscholar
(22)
Jeník J (1957)
Korenový systém dubu letního a zimního: rhizologická studie. [Root system of oaks]. Nakladatelství CSAV, Praha, Czech Republic. pp. 85. [in Czech]
Gscholar
(23)
Jeník J, Soukupová L (1999)
On the growth form of bog pine, Pinus × pseudopumilio. Silva Gabreta 3: 25-32.
Online | Gscholar
(24)
Joys A, Fuller RJ, Dolman PM (2004)
Influence of deer browsing, coppice history, and standard trees on the growth and development of vegetation structure in coppiced woods in lowland England. Forest Ecology and Management 202: 23-37.
CrossRef | Gscholar
(25)
Král K, Valtera M, Janík D, Šamonil P, Vrška T (2014)
Spatial variability of general stand characteristics in central European beech-dominated natural stands - Effects of scale. Forest Ecology and Management 328: 353-364.
CrossRef | Gscholar
(26)
Kull K (1995)
Growth form parameters of clonal herbs. Consortium Masingii: A Festschrift for Victor Masing, Tartu, Estonia, pp. 106-115.
Online | Gscholar
(27)
Lang S, Tiede D (2003)
vLATE Extension für ArcGIS - vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse [vLATE - Vector-based Landscape Analysis Tools Extension for ArcGIS}. In: Proceedings of the Conference “ESRI Anwenderkonferenz” [ESRI User-conference]. Innsbruck (Austria) 8-10 Oct 2003. [CD-ROM] [in German]
Online | Gscholar
(28)
Larsen DR, Johnson PS (1998)
Linking the ecology of natural oak regeneration to silviculture. Forest Ecology and Management 106: 1-7.
CrossRef | Gscholar
(29)
Loosmore NB, Ford ED (2006)
Statistical inference using the G or K point pattern spatial statistics. Ecology 87: 1925-1931.
CrossRef | Gscholar
(30)
McGarigal K, Marks BJ (1995)
Fragstats: spatial pattern analysis program for quantifying landscape structure, version 2.0. Oregon State University, Corvallis, USA, pp. 134.
Gscholar
(31)
Nadezhdina N, Cermak J (2003)
Instrumental methods for studies of structure and function of root systems of large trees. Journal of Experimental Botany 54: 1511-1521.
CrossRef | Gscholar
(32)
Neruda P (2007)
Starší doba kamenná v Podyjí: Současný stav a perspektivy [Old stone age in the river Dyje region: an overview and perspectives]. Thayensia 7: 291-303. [in Czech]
Gscholar
(33)
Nielsen AB, Møller F (2008)
Is coppice a potential for urban forestry? The social perspective. Urban Forestry and Urban Greening 7: 129-138.
CrossRef | Gscholar
(34)
Peterken GF (1996)
Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press, Cambridge, UK, pp. 540.
Online | Gscholar
(35)
Pigott CD (1989)
Factors controlling the distribution of Tilia cordata Mill. at the northern limits of its geographical range. IV. Estimated ages of the trees. New Phytologist 112: 117-121.
CrossRef | Gscholar
(36)
R Development Core Team (2015)
R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Online | Gscholar
(37)
Rackham O (2006)
Woodlands. Collins, London, UK, pp. 608.
Gscholar
(38)
Reiterová L, Skorpík M (2012)
Plán péče o Národní park Podyjí a jeho ochranné pásmo. [Management plan for Podyjí National Park and its protective zone]. Správa NP Podyjí, Znojmo, Czech Republic, pp. 316. [in Czech]
Gscholar
(39)
Ripley BD (1977)
Modelling spatial patterns. Journal of the Royal Statistical Society (Series B) 39: 172-212.
Online | Gscholar
(40)
Rozas V, Zas R, Solla A (2009)
Spatial structure of deciduous forest stands with contrasting human influence in northwest Spain. European Journal of Forest Research 128: 273-285.
CrossRef | Gscholar
(41)
Rydberg D (2000)
Initial sprouting, growth and mortality of European aspen and birch after selective coppicing in central Sweden. Forest Ecology and Management 130: 27-35.
CrossRef | Gscholar
(42)
Schweingruber FH (2007)
Wood structure and environment. Springer, Berlin, Heidelberg, Germany, pp. 279.
Online | Gscholar
(43)
Stoyan D, Penttinen A (2000)
Recent applications of point process methods in forestry statistics. Statistical Science 15: 61-78.
CrossRef | Gscholar
(44)
Szymura TH, Szymura M, Pietrzak M (2014)
Influence of land relief and soil properties on stand structure of overgrown oak forests of coppice origin with Sorbus torminalis. Dendrobiology 71: 49-58.
Online | Gscholar
(45)
Tolasz R (2007)
Atlas podnebí Ceska. [Climate atlas of Czechia]. Czech Hydrometeorological Institute, Praha, Czech Republic, pp. 255. [in Czech]
Gscholar
(46)
Verheyen K, Bossuyt B, Hermy M, Tack G (1999)
The land use history (1278-1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. Journal of Biogeography 26: 1115-1128.
CrossRef | Gscholar
(47)
Vrška T (1998)
Historický vývoj lesu na území NP Podyjí a v bližším okolí do roku 1948. [Historical development of forests in Podyjí National Park until 1948]. Thayensia 1: 101-124. [in Czech]
Gscholar
(48)
Vyskot M (1961)
Výsledky neprímých prevodu parezin pretvárením. [The results of coppice transformation management]. Lesnictví 12: 1061-1096. [in Czech]
Gscholar
(49)
Walker J, Sharpe PJ, Penridge LK, Wu HI (1989)
Ecological field theory: the concept and field tests. Vegetatio 83: 81-95.
CrossRef | Gscholar
(50)
Weber P, Bardgett RD (2011)
Influence of single trees on spatial and temporal patterns of belowground properties in native pine forest. Soil Biology and Biochemistry 43: 1372-1378.
CrossRef | Gscholar
(51)
Wu HI, Sharpe PJ, Walker J, Penridge LK (1985)
Ecological field theory: a spatial analysis of resource interference among plants. Ecological Modelling 29: 215-243.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info