*
 

iForest - Biogeosciences and Forestry

*

The losses of condensed tannins in six foliar litters vary with gap position and season in an alpine forest

Han Li (1), Fuzhong Wu (1-2), Wanqin Yang (1-2)   , Liya Xu (1), Xiangyin Ni (1), Jie He (1), Bo Tan (1-2), Yi Hu (1), Meta Francis Justin (1)

iForest - Biogeosciences and Forestry, Volume 9, Issue 6, Pages 910-918 (2016)
doi: https://doi.org/10.3832/ifor1738-009
Published: Aug 04, 2016 - Copyright © 2016 SISEF

Research Articles


Condensed tannins (CTs) have been considered to be intrinsic variables that determine litter decomposition. Forest gaps and the surrounding crown canopies may locally influence the microenvironmental factors, thus affecting the losses of CTs from litter. However, little information is available about the dynamics of CTs loss in forest gaps. In this study, litterbags containing foliar litter of Minjiang fir (Abies faxoniana), red birch (Betula albosinensis), Masters larch (Larix mastersiana), cypress (Sabina saltuaria), Kangding willow (Salix paraplesia), and Lapland azalea (Rhododendron lapponicum), were placed on the forest floor at differet positions from the gap center to the closed canopy in the alpine Minjiang fir forest located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau (China). The samples were retrieved during the periods of snow formation, snow cover, snow melt and in the growing season, and the CTs content was measured at each time point. During the first year, all six types of foliar litter experienced high losses of CTs with values ranging from 70.18% to 96.67%. Forest gaps accelerated litter CTs losses in the winter but inhibited CTs losses in the growing season, which demonstrated significant seasonal differences. Additionally, the litter of conifers exhibited greater CTs losses in the winter, especially during the snow formation period, whereas the litter of broadleaved trees showed greater CTs losses during the growing season. These results indicate that the predicted reductions in snow depth resulting from future winter warming and the loss of forest gaps due to forest regeneration will inhibit the decomposition of CTs in the litter of alpine forest ecosystems, which will slow soil carbon sequestration from foliar litter in cold biomes.

  Keywords


Forest Gap, Condensed Tannins, Foliar Litter, Seasonal Snowpack, Alpine Forest

Authors’ address

(1)
Han Li
Fuzhong Wu
Wanqin Yang
Liya Xu
Xiangyin Ni
Jie He
Bo Tan
Yi Hu
Meta Francis Justin
Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu 611130 (China)
(2)
Fuzhong Wu
Wanqin Yang
Bo Tan
Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130 (China)

Corresponding author

 
Wanqin Yang
scyangwq@163.com

Citation

Li H, Wu F, Yang W, Xu L, Ni X, He J, Tan B, Hu Y, Justin MF (2016). The losses of condensed tannins in six foliar litters vary with gap position and season in an alpine forest. iForest 9: 910-918. - doi: 10.3832/ifor1738-009

Academic Editor

Giustino Tonon

Paper history

Received: Jun 10, 2015
Accepted: May 02, 2016

First online: Aug 04, 2016
Publication Date: Dec 14, 2016
Publication Time: 3.13 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 12443
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 9651
Abstract Page Views: 456
PDF Downloads: 1755
Citation/Reference Downloads: 54
XML Downloads: 527

Web Metrics
Days since publication: 1519
Overall contacts: 12443
Avg. contacts per week: 57.34

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Jun 2020)

(No citations were found up to date. Please come back later)


 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Baptist F, Yoccoz NG, Choler P (2010)
Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant Soil 328: 397-410.
CrossRef | Gscholar
(2)
Batty LC, Younger PL (2007)
The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage. Chemosphere 66:158-164.
CrossRef | Gscholar
(3)
Berg B (2000)
Litter decomposition and organic matter turnover in northern forest soils. Forest ecology and Management 133: 13-22.
CrossRef | Gscholar
(4)
Berg B, McClaugherty C (2014)
Plant litter: decomposition, humus formation, carbon sequestration (3rd edn). Springer-Verlag, Berlin, Germany, pp. 35-107.
Gscholar
(5)
Bhat TK, Singh B, Sharma OP (1998)
Microbial degradation of tannins-a current perspective. Biodegradation 9: 343-357.
CrossRef | Gscholar
(6)
Bokhorst S, Metcalfe DB, Wardle DA (2013)
Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology and Biochemistry 62: 157-164.
CrossRef | Gscholar
(7)
Coulis M, Hättenschwiler S, Rapior S, Coq S (2009)
The fate of condensed tannins during litter consumption by soil animals. Soil Biology and Biochemistry 41: 2573-2578.
CrossRef | Gscholar
(8)
De Colmenares NG, Ramírez-Martínez JR, Aldana JO, Ramos-Niño ME, Clifford MN, Pékerar S, Méndez B (1998)
Isolation, characterisation and determination of biological activity of coffee proanthocyanidins. Journal of the Science of Food and Agriculture 77: 368-372.
CrossRef | Gscholar
(9)
Don A, Kalbitz K (2005)
Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biology and Biochemistry 37: 2171-2179.
CrossRef | Gscholar
(10)
Haase K, Wantzen KM (2008)
Analysis and decomposition of condensed tannins in tree leaves. Environmental Chemistry Letters 6: 71-75.
CrossRef | Gscholar
(11)
Hagerman AE, Butler LG (1989)
Choosing appropriate methods and standards for assaying tannin. Journal of Chemical Ecology 15: 1795-1810.
CrossRef | Gscholar
(12)
Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998)
High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry 46: 1887-1892.
CrossRef | Gscholar
(13)
Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE (2002)
Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. Journal of Agricultural and Food Chemistry 50: 1785-1790.
CrossRef | Gscholar
(14)
He W, Wu F, Zhang D, Yang W, Tan B, Zhao Y, Wu Q (2015)
The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant and Soil 1-14.
CrossRef | Gscholar
(15)
Heil M, Baumann B, Andary C, Linsenmair EK, McKey D (2002)
Extraction and quantification of “condensed tannins” a measure of plant anti-herbivore defence? Revisiting an old problem. Naturwissenschaften 89: 519-524.
CrossRef | Gscholar
(16)
Hernes PJ, Benner R, Cowie GL, Goñi MA, Bergamaschi BA, Hedges JI (2001)
Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach. Geochimica et Cosmochimica Acta 65: 3109-3122.
CrossRef | Gscholar
(17)
Hicks Pries CE, Schuur EAG, Vogel JG, Natali SM (2013)
Moisture drives surface decomposition in thawing tundra. Journal of Geophysical Research: Biogeosciences 118: 1133-1143.
CrossRef | Gscholar
(18)
Konestabo HS, Michelsen A, Holmstrup M (2007)
Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Applied Soil Ecology 36: 136-146.
CrossRef | Gscholar
(19)
Kraus TE, Dahlgren RA, Zasoski RJ (2003)
Tannins in nutrient dynamics of forest ecosystems - a review. Plant and Soil 256: 41-66.
CrossRef | Gscholar
(20)
Lemma B, Nilsson I, Kleja DB, Olsson M, Knicker H (2007)
Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology and Biochemistry 39: 2317-2328.
CrossRef | Gscholar
(21)
Lin YM, Liu JW, Xiang P, Lin P, Ye GF, Da Sternberg LSL (2006)
Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry 78: 343-359.
CrossRef | Gscholar
(22)
Maie N, Pisani O, Jaffé R (2008)
Mangrove tannins in aquatic ecosystems: their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnology and Oceanography 53: 160-171.
CrossRef | Gscholar
(23)
Ni X, Yang W, Li H, Xu L, He J, Tan B, Wu F (2014)
The responses of early foliar litter humification to reduced snow cover during winter in an alpine forest. Canadian Journal of Soil Science 94: 453-461.
CrossRef | Gscholar
(24)
Ni X, Yang W, Tan B, He J, Xu L, Li H, Wu F (2015)
Accelerated foliar litter humification in forest gaps: dual feedbacks of carbon sequestration during winter and the growing season in an alpine forest. Geoderma 241: 136-144.
CrossRef | Gscholar
(25)
O’Connell AM (1997)
Decomposition of slash residues in thinned regrowth eucalypt forest in Western Australia. Journal of Applied Ecology 34: 111-122.
CrossRef | Gscholar
(26)
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE (2003)
Five stages of the Alaskan Arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research 35: 74-81.
CrossRef | Gscholar
(27)
Promis A, Gärtner S, Reif A, Cruz G (2012)
Effects of canopy gaps on forest floor vascular and non-vascular plant species composition and diversity in an uneven-aged Nothofagus betuloides forest in Tierra del Fuego, Chile. Community Ecology 13: 145-154.
CrossRef | Gscholar
(28)
Ritter E, Dalsgaard L, Einhorn KS (2005)
Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. Forest Ecology and Management 206: 15-33.
CrossRef | Gscholar
(29)
Sariyildiz T (2008)
Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in Northeast Turkey. Ecosystems 11: 841-853.
CrossRef | Gscholar
(30)
Schofield JA, Hagerman AE, Harold A (1998)
Loss of tannins and other phenolics from willow leaf litter. Journal of Chemical Ecology 24: 1409-1421.
CrossRef | Gscholar
(31)
Song XZ, Jiang H, Zhang HL, Yu SQ, Zhou GM, Ma YD, Chang SX (2008)
A review on the effects of global environment change on litter decomposition. Acta Ecologica Sinica 28: 4414-4423.
Gscholar
(32)
Spies TA, Franklin JF, Klopsch M (1990)
Canopy gaps in Douglas-fir forests of the Cascade Mountains. Canadian Journal of Forest Research 20: 649-658.
CrossRef | Gscholar
(33)
Talbot JM, Yelle DJ, Nowick J, Treseder KK (2012)
Litter decay rates are determined by lignin chemistry. Biogeochemistry 108: 279-295.
CrossRef | Gscholar
(34)
Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010)
Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica 30: 93-99.
CrossRef | Gscholar
(35)
Tan B, Wu FZ, Yang WQ, Yang YL, Wang A, Kang LN (2011a)
Effects of snowpack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology 22: 2553-2559.
Gscholar
(36)
Tan B, Wu F, Yang W, Yu S, Liu L, Wang A (2011b)
The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest. Acta Agriculturae Scandinavica, Section B - Soil Plant Science 61: 670-679.
CrossRef | Gscholar
(37)
Uchida M, Mo W, Nakatsubo T, Tsuchiya Y, Horikoshi T, Koizumi H (2005)
Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural and forest meteorology 134: 102-109.
CrossRef | Gscholar
(38)
Whitmore TC (1989)
Canopy gaps and the two major groups of forest trees. Ecology 70: 536-538.
CrossRef | Gscholar
(39)
Wu F, Yang W, Zhang J, Deng R (2010)
Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica 36: 135-140.
CrossRef | Gscholar
(40)
Wu F, Peng C, Zhu J, Zhang J, Tan B, Yang W (2014a)
Impact of changes in freezing and thawing on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan Plateau. Biogeosciences Discussions 11: 9539-9564.
CrossRef | Gscholar
(41)
Wu Q, Wu F, Yang W, Zhao Y, He W, Tan B (2014b)
Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of Eastern Tibet Plateau. PLoS ONE 9 (5): e97112.
CrossRef | Gscholar
(42)
Zhang LH, Ye GF, Lin YM, Zhou HC, Zeng Q (2009)
Seasonal changes in tannin and nitrogen contents of Casuarina equisetifolia branchlets. Journal of Zhejiang University Science B 10: 103-111.
CrossRef | Gscholar
(43)
Zhou HC, Tam NFY, Lin YM, Wei SD, Li YY (2012)
Changes of condensed tannins during decomposition of leaves of Kandelia obovata in a subtropical mangrove swamp in China. Soil Biology and Biochemistry 44: 113-121.
CrossRef | Gscholar
(44)
Zhu J, He X, Wu F, Yang W (2012)
Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research 27: 586-596.
CrossRef | Gscholar
(45)
Zhu J, Yang W, He X (2013)
Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient. PLoS ONE 8 (4): e62073.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info