iForest - Biogeosciences and Forestry


Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau

Teresa Bueis (1-2), Felipe Bravo (1-3), Valentín Pando (1-4), María-Belén Turrión (1-2)   

iForest - Biogeosciences and Forestry, Volume 9, Issue 3, Pages 394-401 (2016)
doi: https://doi.org/10.3832/ifor1600-008
Published: Jan 16, 2016 - Copyright © 2016 SISEF

Research Articles

The assessment of forest productivity at early stages of stand development may help to define the most appropriate silviculture treatment to be applied for each stand. Site index (dominant height at a reference age) is a useful tool for forest productivity estimation. The aim of this study was to develop a model to predict site index for Scots pine (Pinus sylvestris L.) plantations in northern Spain acidic plateau by using soil (physical, chemical and biochemical), climatic and physiographic parameters. To meet this objective, data from 35 stands classified into three different site quality classes and 63 soil, climatic and physiographic parameters were examined in order to develop a discriminant model. After selecting 12 discriminant models which were biologically consistent and presented the higher cross-validated rate of correct classification, a model including four parameters (latitude, inorganic Al, porosity and microbial biomass carbon) as predictors was chosen. The discriminant model classified 71% of cases correctly and no inferior-quality stands were misassigned to the highest quality class. Soil and physiographic parameters included in the above model are easily obtainable in the field or by simple laboratory analysis, thus our results can be easily integrated in operational forestry to determine site quality.


Soil-Site Method, Site Productivity, Environmental Factor, Discriminant Analysis, Principal Components

Authors’ address

Teresa Bueis
Felipe Bravo
Valentín Pando
María-Belén Turrión
Sustainable Forest Management Research Institute, University of Valladolid & INIA, Avda. Madrid 44, 34004 Palencia (Spain)
Teresa Bueis
María-Belén Turrión
Departamento de Ciencias Agroforestales, E.T.S. Ingenierías Agrarias, Universidad de Valladolid (Spain)
Felipe Bravo
Departamento de Producción Vegetal y Recursos Forestales, E.T.S. Ingenierías Agrarias, Universidad de Valladollid (Spain)
Valentín Pando
Departamento de Estadística e Investigación Operativa, E.T.S. Ingenierías Agrarias, Universidad de Valladolid (Spain)

Corresponding author

María-Belén Turrión


Bueis T, Bravo F, Pando V, Turrión M-B (2016). Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau. iForest 9: 394-401. - doi: 10.3832/ifor1600-008

Academic Editor

Andrea Cutini

Paper history

Received: Feb 13, 2015
Accepted: Sep 09, 2015

First online: Jan 16, 2016
Publication Date: Jun 01, 2016
Publication Time: 4.30 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 20346
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 14055
Abstract Page Views: 1036
PDF Downloads: 4174
Citation/Reference Downloads: 24
XML Downloads: 1057

Web Metrics
Days since publication: 3075
Overall contacts: 20346
Avg. contacts per week: 46.32

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2016): 10
Average cites per year: 2.00


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Aertsen W, Kint V, De Vos B, Deckers J, Van Orshoven J, Muys B (2012)
Predicting forest site productivity in temperate lowland from forest floor, soil and litterfall characteristics using boosted regression trees. Plant and Soil 354: 157-172.
CrossRef | Gscholar
Afif-Khouri E, Obregon MAC, Oliveira-Prendes JA, Gorgoso-Varela JJ, Canga-Libano E (2010)
Relationship among soil parameters, tree nutrition and site index of Pinus radiata D. Don in Asturias, NW Spain. Forest Systems 19: 77-88.
CrossRef | Gscholar
Alvarez-Alvarez P, Khouri EA, Camara-Obregon A, Castedo-Dorado F, Barrio-Anta M (2011)
Effects of foliar nutrients and environmental factors on site productivity in Pinus pinaster Ait. stands in Asturias (NW Spain). Annals of Forest Science 68: 497-509.
CrossRef | Gscholar
Assmann E (1970)
The principles of forest yield study. Pergamon Press, Oxford, UK, pp. 506.
Bascomb CL (1968)
Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. Journal of Soil Science 19: 251-268.
CrossRef | Gscholar
Bertsch PM, Bloom PR (1996)
Aluminum. In: “Methods of Soil Analysis (Part 3) - Chemical Methods” (Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatai MA, Johnston CT, Sumner ME eds). SSSA, Madison, WI, USA, pp. 517-550.
Binkley D, Ortíz MG, Pérez RO (1993)
Nutrición forestal: prácticas de manejo [Forest nutrition: management practices]. Limusa, DF, México, pp. 340. [in Spanish]
Blakemore LC, Searle PL, Daly BK (1987)
Methods for chemical analysis of soils. NZ Soil Bureau Scientific Report 80: 71-76.
Bravo-Oviedo A, Montero G (2005)
Site index in relation to edaphic variables in stone pine (Pinus pinea L.) stands in south west Spain. Annals of Forest Science 62: 61-72.
CrossRef | Gscholar
Bravo-Oviedo A, Roig S, Bravo F, Montero G, Río M (2011)
Environmental variability and its relationship to site index in Mediterranean maritine pine. Forest Systems 20: 50-64.
CrossRef | Gscholar
Bravo F, Montero G (2001)
Site index estimation in Scots pine (Pinus sylvestris L.) stands in the high Ebro basin (northern Spain) using soil attributes. Forestry 74: 395-406.
CrossRef | Gscholar
Bravo F, Luca M, Mercurio R, Sidari M, Muscolo A (2011)
Soil and forest productivity: a case study from Stone pine (Pinus pinea L.) stands in Calabria (southern Italy). iForest 4: 25-30.
CrossRef | Gscholar
Candel-Perez D, Linares JC, Vinegla B, Lucas-Borja ME (2012)
Assessing climate-growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient. Forest Ecology and Management 274: 48-57.
CrossRef | Gscholar
DGCN (2002)
El Tercer Inventario Forestal Nacional. [Third National Forest Inventory]. Ministerio de Medio Ambiente, Dirección General para la Conservación de la Naturaleza, Madrid, Spain. [in Spanish]
Duchaufour P (1984)
Edafología 1. Edafogénesis y Clasificación [Pedology 1: pedogenesis and classification]. Masson, Barcelona, Spain, pp. 493. [in Spanish]
Eilmann B, Rigling A (2012)
Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiology 32: 178-187.
CrossRef | Gscholar
Gartzia-Bengoetxea N, Gonzalez-Arias A, Kandeler E, De Arano IM (2009)
Potential indicators of soil quality in temperate forest ecosystems: a case study in the Basque Country. Annals of Forest Science 66 (3): 303.
CrossRef | Gscholar
Hagglund B, Lundmark JE (1977)
Site index estimation by means of site properties. Scots pine and Norway Spruce in Sweden. Studia Forestalia Suecica 138: 38.
Hair JF, Suárez MG, Tatham L, Black C (1999)
Análisis multivariante [Multivariate analysis]. Prentice Hall. Madrid, Spain. pp. 832. [in Spanish]
Harding RB, Grigal DF, White EH (1985)
Site quality evaluation for white spruce plantations using discriminant analysis. Soil Science Society of America Journal 49: 229-232.
CrossRef | Gscholar
He ZL, Wu J, O’Donnell AG, Syers JK (1997)
Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils 24: 421-428.
CrossRef | Gscholar
Herrero de Aza C, Bravo F, Turrión MB (2011)
Cuantificación de C en el suelo y en la hojarasca en pinares y rebollares del norte de España [Quantifying soil and litter C on Pinus and Quercus pyrenaica stands in Northern Spain]. In: “Materia orgánica edáfica y captura de carbono en sistemas iberoamericanos” (García Oliva F, Turrión MB, García-Trujillo GC, Madejón E eds). Editorial SiFyQA, Salamanca, Spain, pp. 249-266. [in Spanish]
Isermeyer H (1952)
Eine einfache Methode sur Bestimmung der Bodenatmung und der Carbonate im Boden [A simple method to determine soil respiration and carbonates in soil]. Zeitschrift Pflanzenernährung und Bodenkunde 56: 26-38. [in German]
CrossRef | Gscholar
Jenkinson DS, Ladd JN (1981)
Microbial biomass in soils: measurement and turnover. In: “Soil Biochemistry” (Paul EA, Ladd JN eds). Marcel Dekker, New York, USA, pp. 415-417.
Johnson DE (1998)
Applied multivariate methods for data analysts. Duxbury Press, Pacific Grove, CA, USA, pp. 567.
Jokela EJ, White EH, Berglund JV (1988)
Predicting norway spruce growth from soil and topographic properties in New York. Soil Science Society of America Journal 52: 809-815.
CrossRef | Gscholar
Jolliffe IT (1973)
Discarding variables in a principal component analysis. II: Real data. Applied Statistics 22: 21-31.
CrossRef | Gscholar
Mahía J, Pérez-Ventura L, Cabaneiro AM, Díaz-Raviña M (2006)
Soil microbial biomass under pine forests in the northwestern Spain: influence of stand age, site index and parent material. Investigación agraria. Sistemas y recursos forestales 15: 152-159.
CrossRef | Gscholar
MAPA (1993)
Métodos oficiales de análisis. Tomo III [Official methods of analysis. Volume III]. Ministerio de Agricultura, Pesca y Alimentación. Gobierno de España, Madrid, Spain, pp. 532. [in Spanish]
McKeague J, Brydon I, Miles N (1971)
Differentiation of forms of extractable iron and aluminium in soils. Soil Science Society of America Proceedings 35: 33-38.
CrossRef | Gscholar
Mehlich A (1953)
Rapid determination of cation and anion exchange properties and pH of soils. Journal of the Association of Official Agricultural Chemists 36: 445-457.
Molina E, Bornemisza E, Sancho F, Kass D (1991)
Soil aluminum and iron fractions and their relationships with P immobilization and other soil properties in andisols of Costa Rica and Panama. Communications in Soil Science and Plant Analysis 22: 1459-1476.
CrossRef | Gscholar
Murphy J, Riley JP (1962)
A modified single solution method for the determination of phosphorus in natural waters. Analytica Chimica Acta 27: 31-36.
CrossRef | Gscholar
Ninyerola M, Pons i Fernández X, Roure JM (2005)
Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica [Digital climatic atlas of the Iberian Peninsula: methodology and applications for bioclimatology and geobotany]. Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain, pp. 45. [in Spanish]
Ortega A, Montero G (1988)
Evaluación de la calidad de las estaciones forestales. Revisión bibliográfica. [Forest site quality assessment. A literature review]. Ecología 2: 155-184. [in Spanish]
Online | Gscholar
Pacheco C (1991)
Evaluating site quality of even-aged maritime pine stands in northern Portugal using direct and indirect methods. Forest Ecology and Management 41: 193-204.
CrossRef | Gscholar
Pritchett WL (1986)
Suelos forestales: propiedades, conservación y mejoramiento [Forest soils: properties, conservation and improvement]. Limusa, DF, México, pp. 635. [in Spanish]
Río M, López E, Montero G (2006)
Manual de gestión para masas procedentes de repoblación de Pinus pinaster Ait., Pinus sylvestris L. y Pinus nigra Arn. [Management manual for Pinus pinaster Ait., Pinus sylvestris L. and Pinus nigra Arn. stands originated by afforestation]. Consejería de Medio Ambiente, Junta de Castilla y León, Castilla y León, Spain, pp. 102. [in Spanish]
Romanya J, Vallejo VR (2004)
Productivity of Pinus radiata plantations in Spain in response to climate and soil. Forest Ecology and Management 195: 177-189.
CrossRef | Gscholar
Sanchez-Rodriguez F, Rodriguez-Soalleiro R, Espanol E, Lopez CA, Merino A (2002)
Influence of edaphic factors and tree nutritive status on the productivity of Pinus radiata D. Don plantations in northwestern Spain. Forest Ecology and Management 171: 181-189.
CrossRef | Gscholar
Sanchez-Salguero R, Navarro-Cerrillo RM, Swetnam TW, Zavala MA (2012)
Is drought the main decline factor at the rear edge of Europe? The case of southern Iberian pine plantations. Forest Ecology and Management 271: 158-169.
CrossRef | Gscholar
Schollenberger CJ, Simon RH (1945)
Determination of exchange capacity and exchangeable bases in soil - ammonium acetate method. Soil Science 59: 13-24.
CrossRef | Gscholar
Serrada R, González GM, Reque JA (2008)
Compendio de selvicultura aplicada en España [Compendium of applied silviculture in Spain]. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain, pp. 1178. [in Spanish]
Sewerniak P, Piernik A (2012)
Regression models for impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. Sylwan 156: 563-571.
Sharma RP, Brunner A, Eid T (2012)
Site index prediction from site and climate variables for Norway spruce and Scots pine in Norway. Scandinavian Journal of Forest Research 27: 619-636.
CrossRef | Gscholar
Skovsgaard JP, Vanclay JK (2008)
Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81: 13-31.
CrossRef | Gscholar
Staddon WJ, Duchesne LC, Trevors JT (1999)
The role of microbial indicators of soil quality in ecological forest management. Forestry Chronicle 75: 81-86.
CrossRef | Gscholar
Statgraphics (2014)
Statgraphics Centurion XVII user manual. StatPoint Technologies Inc., Warrenton, VA, USA, pp. 319.
Taeger S, Zang C, Liesebach M, Schneck V, Menzel A (2013)
Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. Forest Ecology and Management 307: 30-42.
CrossRef | Gscholar
Thornthwaite C (1949)
A rational approach to the classification of climate. Geographical review 38: 55-94.
CrossRef | Gscholar
Turrión MB, Gallardo JF, González MI (1997)
Nutrient availability in forest soils as measured with anion exchange membranes. Geomicrobiology Journal 14: 51-64.
CrossRef | Gscholar
Vance ED, Brookes PC, Jenkinson DS (1987)
An extraction method for measuring soil microbial biomass-C. Soil Biology and Biochemistry 19: 703-707.
CrossRef | Gscholar
Vanclay JK (1994)
Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford, UK, pp. 312.
Online | Gscholar
Walkley A, Black IA (1934)
An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.
CrossRef | Gscholar
White EJ (1982)
Relationship between height growth of Scots pine (Pinus sylvestris L.) and site factors in Great Britain. Forest Ecology and Management 4: 225-245.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info