iForest - Biogeosciences and Forestry


Distribution of juveniles of tree species along a canopy closure gradient in a tropical cloud forest of the Venezuelan Andes

Ana Quevedo-Rojas (1)   , Mauricio Jerez-Rico (2), Teresa Schwarzkopf Kratzer (3), Carlos García-Núñez (3)

iForest - Biogeosciences and Forestry, Volume 9, Issue 3, Pages 363-369 (2015)
doi: https://doi.org/10.3832/ifor1568-008
Published: Dec 08, 2015 - Copyright © 2015 SISEF

Research Articles

Cloud forests represent a minor portion of the world forests, though outstanding in terms of biodiversity, endemisms, and environmental services provided. Understanding the factors that drive the regeneration and species composition of these forests, and in particular how light availability affects the patterns of juvenile tree distribution in the understory, is critical for conservation and restoration programs. In this study, we determined the range-size and overlap of the abundance distribution of juveniles for 20 tree species in an Andean tropical cloud forest in Venezuela along a gradient of percentage canopy openness (%CO) used as a surrogate of light availability. The observed distribution of %CO was then compared with a bounded null model of community structure in order to test light partitioning as a driver of tree species’ coexistence. We measured %CO using hemispherical photography and the abundance and size of juvenile trees in 280 plots of 1-m radius spread over a 32 ha forest area. The distribution of sites was skewed towards the lower end of the %CO gradient (0.5 to 12.8%), while species abundance sharply diminished at both ends of the gradient. Nevertheless, 15 out of 20 species had a non-random distribution in relation to %CO, with many species concentrated near the lower side of the gradient. The observed pattern of species’ overlap was within the 95% confidence limits for the average overlap expected under the bounded null model. These patterns indicate that low canopy openness is the rule in this forest, in spite of the scattered tree-fall gaps, and suggest that light partitioning does not determine the tree community structure at the juvenile stage. High redundancy in light requirements among juveniles of tree species may have a positive effect on species coexistence in cloud forests, thus maintaining a high species diversity. However, other factors such as recruitment limitation and differential growth/carbon-gain among species at the juvenile stage along the light gradient could contribute to the high diversity of these ecosystems.


Natural Regeneration, Light Availability, Understory, Shade Tolerance, Hemispherical Photography, Null Models

Authors’ address

Ana Quevedo-Rojas
Facultad de Ciencias Forestales y Ambientales, Escuela Técnica Superior Forestal (ETSUFOR), Universidad de Los Andes (ULA), Conjunto Forestal, Mérida (Venezuela)
Mauricio Jerez-Rico
Facultad de Ciencias Forestales y Ambientales, Centro de Estudios Forestales y Ambientales de Postgrado (CEFAP), Universidad de Los Andes, Conjunto Forestal, Mérida (Venezuela)
Teresa Schwarzkopf Kratzer
Carlos García-Núñez
Facultad de Ciencias, Instituto de Ciencias Ambientales y Ecológicas (ICAE), Universidad de Los Andes, Conjunto Forestal, Mérida (Venezuela)

Corresponding author

Ana Quevedo-Rojas


Quevedo-Rojas A, Jerez-Rico M, Schwarzkopf Kratzer T, García-Núñez C (2015). Distribution of juveniles of tree species along a canopy closure gradient in a tropical cloud forest of the Venezuelan Andes. iForest 9: 363-369. - doi: 10.3832/ifor1568-008

Academic Editor

Arthur Gessler

Paper history

Received: Jan 19, 2015
Accepted: Jul 31, 2015

First online: Dec 08, 2015
Publication Date: Jun 01, 2016
Publication Time: 4.33 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 22114
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 17350
Abstract Page Views: 937
PDF Downloads: 2805
Citation/Reference Downloads: 15
XML Downloads: 1007

Web Metrics
Days since publication: 3095
Overall contacts: 22114
Avg. contacts per week: 50.02

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

(No citations were found up to date. Please come back later)


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Acevedo M, Monteleone S, Ataroff M, Estrada C (2001)
Aberturas del dosel y espectro de la luz en el sotobosque de una selva nublada andina de Venezuela [Canopy gaps and understory light spectrum in a Venezuelan Andean cloud forest]. Ciencia 9: 165-183. [in Spanish]
Acevedo M, Ataroff M, Monteleone S, Estrada C (2003)
Heterogeneidad estructural y lumínica del sotobosque de una selva nublada andina de Venezuela [Light and structural heterogeneity in the understory of a Venezuelan Andean cloud forest]. Interciencia 28: 394-403. [in Spanish]
Ataroff M (2001)
Venezuela. In: “Bosques Nublados del Neotrópico” (Kappelle M, Brown A eds). INBio, Costa Rica, pp. 397- 442. [in Spanish]
Bazzaz F, Pickett S (1980)
Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics 11: 287-310.
CrossRef | Gscholar
Brokaw N, Busing R (2000)
Niche versus chance and tree diversity and forest gaps. Trends in Ecology and Evolution 15: 183-188.
CrossRef | Gscholar
Brown AD, Kappelle M (2001)
Introducción a los bosques nublados del neotrópico: una síntesis regional. In: “Bosques nublados del neotrópico” (Kappelle M, Brown A eds). INBio, Costa Rica, pp. 697. [in Spanish]
Brusa A, Bunker DE (2014)
Increasing the precision of canopy closure estimates from hemispherical photography: blue channel analysis and under-exposure. Agricultural and Forest Meteorology 195-196: 102-107.
CrossRef | Gscholar
Chazdon RL, Pearcy W (1991)
The importance of sunflecks for forest understory plants. BioScience 41: 760-766.
CrossRef | Gscholar
Chazdon RL, Fetcher N (1984)
Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. Journal of Ecology 72: 553-564.
CrossRef | Gscholar
Chianucci F, Cutini A (2012)
Digital hemispherical photography for estimating forest canopy properties: current controversies and opportunities. iForest - Biogeosciences and Forestry 5: 290-295.
CrossRef | Gscholar
Chen JM, Black TA (1991)
Measuring leaf area index of plant canopies with branch architecture. Agricultural and Forest Meteorology 57: 1-12.
CrossRef | Gscholar
Colwell R, Rahbek C, Gotelli N (2005)
The mid-domain effect: there’s a baby in the bathwater. The American Naturalist 166: 149-154.
CrossRef | Gscholar
De Carvahlo LMT, De Oliveira-Filho AT (2001)
Distribution, size and dynamics of canopy gaps in a cloud forest of the Ibitipoca range, southeastern Brazil. In: “Life forms and dynamics in tropical forest” (Gottsberger G, Liede S eds). Dissertationes Botanicae, Berlin-Stuttgart, Germany, pp. 29-39.
De Lima RA, De Moura LC (2008)
Gap disturbance regimen and composition in the Atlantic Montane Rain Forest. Plant Ecology 197: 239-253.
CrossRef | Gscholar
Denslow JS (1980)
Gap partitioning among tropical rainforest tree. Biotropica 12 (2):47-55.
Online | Gscholar
Denslow JS (1996)
Functional groups diversity and responses to disturbance. In: “Biodiversity and Ecosystem Processes in Tropical Forests” (Orians G, Dirzo R, Cushman JH eds). Springer-Verlag, Berlin, Germany, vol. 122, pp. 127-151.
Endler JA (1993)
The color of light in forests and its implications. Ecological Monographs 63: 1-27.
CrossRef | Gscholar
Figueroa JA, Lusk CH (2001)
Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytologist 152: 483-489.
CrossRef | Gscholar
Frazer G, Canham C, Lertzman KP (1999)
Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-color fisheye photographs, user manual and program documentation. Simon Frazer University, Burnaby, British Columbia, Canada, and Institute of Ecosystem Studies, Millbrook, New York, USA, pp. 34.
Online | Gscholar
Frazer G, Fournier R, Trofymow J, Hall R (2001)
A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agricultural and Forest Meteorology 109: 249-263.
CrossRef | Gscholar
García-Núñez C, Azócar A, Rada F (1995)
Photosynthetic acclimation to light in juveniles of two cloud forest tree species. Tree 10: 114-124.
CrossRef | Gscholar
Grytnes JA (2003)
Ecological interpretation of the mid-domain effect. Ecology Letters 6: 883-888.
CrossRef | Gscholar
Hamilton LS (1995)
Mountain cloud forest conservation and research: a synopsis. Mountain Research and Development 15: 259-266.
CrossRef | Gscholar
Hogan KP, Machado JL (2002)
La luz solar: consecuencias biológicas y su medición [Sun light: biological consequences and its measurement]. In: “Ecología y Conservación de Bosques Neotropicales” (Kattan G, Guariguata MR eds). Libro Universitario Regional, EULAC-GTZ, Costa Rica, pp. 119-143. [in Spanish]
Hubbell SP, Foster RB, O’Brien ST. Harms KE, Condit R, Wechsler B, Wright SJ, Lao L (1999)
Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283: 554-557.
CrossRef | Gscholar
Inoue A, Yamamoto K, Mizoue N, Kawahara Y (2004)
Effects of image quality, size and camera type on forest light environment estimates using digital hemispherical photography. Agricultural and Forest Meteorology 126 (1-2): 89-97.
CrossRef | Gscholar
Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004)
Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology 121: 19-35.
CrossRef | Gscholar
Lamprecht H, Veillón JP (1967)
La carbonera. El Farol 1: 17-24. [in Spanish]
Lieberman M, Lieberman D, Peralta R (1995)
Canopy closure and distribution of tropical forest tree species in La Selva, Costa Rica. Journal of Tropical Ecology 11: 161-178.
CrossRef | Gscholar
Lusk CH, Chazdon R, Hofmann G (2006)
A bounded null model explains juvenile tree community structure along light availability gradients in a temperate rain forest. Oikos 112: 131-137.
CrossRef | Gscholar
Márquez O (1990)
Génesis de una secuencia de suelos en el Bosque Experimental San Eusebio, La Carbonera, Estado Mérida [Genesis of a soil sequence in the San Eusebio Experimental Forest, La Carbonera, Mérida State]. Revista Forestal Venezolana 32: 133-150. [in Spanish]
McCain CM (2004)
The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography 31: 19-31.
CrossRef | Gscholar
Moll-Rocek J, Gilbert M, Broadbent E (2014)
Brazil nut (Bertholletia excelsa, Lecythidaceae) regeneration in logging gaps in the Peruvian Amazon. International Journal of Forestry Research 2014: 1-8.
CrossRef | Gscholar
Montgomery RA, Chazdon RL (2002)
Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131: 165-174.
CrossRef | Gscholar
Nicotra AB, Chazdon RL, Iriarte SVB (1999)
Spatial heterogeneity of light and woody seedling regeneration in tropical wet forest. Ecology 80: 1908-1926.
CrossRef | Gscholar
Nobis M, Hunziker U (2005)
Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agricultural and Forest Meteorology 128: 243-250.
CrossRef | Gscholar
Ostertarg R (1998)
Belowground effects of canopy gaps in a tropical wet forest. Ecology 79: 1294-1304.
CrossRef | Gscholar
Pearcy RW (2007)
Pearcy RW (2007) Responses of plants to heterogeneous light environments. In: “Functional Plant Ecology (2nd edn)” (Valladares F, Pugnaire F eds). Marcel Dekker, New York, USA, pp. 370-305.
Poorter L, Arets EJM (2003)
Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecology 166: 295-306.
CrossRef | Gscholar
Ramos MC, Plonczak MA (2007)
Dinámica sucesional del componente arbóreo luego de un estudio destructivo de biomasa en el Bosque Universitario San Eusebio, Mérida Venezuela [Arboreal component succesional dynamics after a destructive study of biomass, in San Eusebio University Forest, Mérida-Venezuela]. Revista Forestal Venezolana 51: 35-46. [in Spanish]
Rangel C (2004)
Mapa de vegetación escala 1:5000 y visualización tridimensional de la Estación Experimental San Eusebio por medio de sistemas de información geográfica y animaciones virtuales [Vegetation map 1:5000 scale and tridimensional visualization of the San Eusebio Experimental Station through a geographic information system and virtual animations]. Master Thesis, Centro de Estudios Forestales y Ambientales de Postgrado, Universidad de Los Andes, Mérida, Venezuela, pp. 51. [in Spanish]
Schwarzkopf T, Riha SJ, Fahey TJ, DeGloria S (2011)
Are cloud forest tree structure and environment related in the Venezuelan Andes? Austral Ecology 36: 280-289.
CrossRef | Gscholar
Schwarzkopf T (2003)
Biophysical characterization of cloud forest vegetation in the Venezuelan Andes. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, pp. 173.
Swaine MD, Whitmore TC (1988)
On the definition of ecological species groups in tropical rain forest. Vegetatio 75: 81-86.
CrossRef | Gscholar
Vareschi V (1992)
Ecología de la vegetación tropical [Tropical vegetation ecology]. Sociedad Venezolana de Ciencias Naturales, Caracas, Venezuela, pp. 306. [in Spanish]
Whitfeld T, Lodge A, Roth A, Reich P (2014)
Community phylogenetic diversity and abiotic site characteristics influence abundance of the invasive plant Rhamnus cathartica L. Journal of Plant Ecology 7: 202-209.
CrossRef | Gscholar
Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003)
Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84:3174-3185.
CrossRef | Gscholar
Zhang YC, Jing M, Miller JR (2005)
Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology 133: 166-181.
CrossRef | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info