*
 

iForest - Biogeosciences and Forestry

*

Behavior of pubescent oak (Quercus pubescens Willd.) wood to different thermal treatments

Luigi Todaro (1), Angelo Rita (1), Francesco Negro (2), Nicola Moretti (1), Antonio Saracino (3)   , Roberto Zanuttini (2)

iForest - Biogeosciences and Forestry, Volume 8, Issue 6, Pages 748-755 (2015)
doi: https://doi.org/10.3832/ifor1348-007
Published: Feb 16, 2015 - Copyright © 2015 SISEF

Research Articles


Quercus pubescens Willd. is a common oak species in the Mediterranean area, where it is currently exploited mainly for purposes such as firewood. To improve the technological properties of its wood, various steaming and/or heat treatments were applied to 160 wood samples from a southern Italian stand, cut from either sapwood or heartwood, while 20 samples served as controls. Steaming was carried out in an autoclave at 120 °C, whereas heat treatments were performed in an oven at 150 or 200 °C for 3 or 6 h. The equilibrium moisture content, swelling, mass loss, wood density, compression strength, color variation, and lignin content of the samples were measured and compared among treatments. The swelling and water adsorption of wood samples decreased due to the hydrothermal treatments. The mass loss was strictly related to the temperature and duration of the heat treatments, whereas it was not influenced by the steaming treatment. The average axial compression strength value was positively influenced by the combination of steaming and heat treatments. A significant and general darkening of color was also observed for the harshest treatments, while an increase of lignin content was detected mainly in the sapwood. Thus, pubescent oak wood subjected to steaming and heat treatments may acquire useful characteristics suitable for its industrial use.

  Keywords


Steaming, Moisture Content, Swelling, Color, Strength, Ray Cells

Authors’ address

(1)
Luigi Todaro
Angelo Rita
Nicola Moretti
School of Agricoltural, Forest, Food and Environmental Science, University of Basilicata, Potenza (Italy)
(2)
Francesco Negro
Roberto Zanuttini
Department of Agricultural, Forest and Food Sciences, University of Torino (Italy)
(3)
Antonio Saracino
Department of Agriculture, Division of Biology and Protection of Agricultural and Forest Systems (BIPAF), University of Naples “Federico II” (Italy)

Corresponding author

 
Antonio Saracino
a.saracino@unina.it

Citation

Todaro L, Rita A, Negro F, Moretti N, Saracino A, Zanuttini R (2015). Behavior of pubescent oak (Quercus pubescens Willd.) wood to different thermal treatments. iForest 8: 748-755. - doi: 10.3832/ifor1348-007

Academic Editor

Giacomo Goli

Paper history

Received: May 12, 2014
Accepted: Oct 01, 2014

First online: Feb 16, 2015
Publication Date: Dec 01, 2015
Publication Time: 4.60 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 25174
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 19653
Abstract Page Views: 1094
PDF Downloads: 3076
Citation/Reference Downloads: 20
XML Downloads: 1331

Web Metrics
Days since publication: 3502
Overall contacts: 25174
Avg. contacts per week: 50.32

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2015): 4
Average cites per year: 0.67

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Assor C, Placet V, Chabbert B, Habrant A, Lapierre C, Pollet B, Perre P (2009)
Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood. Journal of Agricultural and Food Chemistry 57: 6830-6837.
CrossRef | Gscholar
(2)
Babicki R, Grzeczynski T, Wroblewska H (1977)
Effect of hydro-thermal-treatment of green beech wood on its chemical and physico-mechanical properties. Wood Science and Technology 11: 125-131.
Online | Gscholar
(3)
Bamber RK, Fukazawa K (1985)
Sapwood and heartwood: a review. Forest Products Abstract 8: 265-276.
Gscholar
(4)
Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007)
Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64: 679-690.
CrossRef | Gscholar
(5)
Burgert I, Bernasconi A, Niklas K, Eckstein D (2001)
The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees. Holzforschung 55: 449-454.
CrossRef | Gscholar
(6)
Dashti H, Shahverdi M, Reza Taghiyari H, Salehpur S, Heshmati S (2012)
Effects of steaming and microwave pretreatments on mass transfer characteristics of Aleppe oak (Quercus infectoria). BioResources 7 (3): 3262-3273.
CrossRef | Gscholar
(7)
Esteves BM, Pereira HM (2009)
Heat treatment of wood. BioResources 4 (1): 370-404.
Gscholar
(8)
Funaoka M, Kako T, Abe I (1990)
Condensation of lignin during heating of wood. Wood Science and Technology 24: 277-288.
CrossRef | Gscholar
(9)
Giordano G (1981)
Tecnologia del legno [Wood technology]. UTET, Torino, Italy, pp. 1136. [in Italian]
Gscholar
(10)
Giordano G (1994)
Caratteristiche e lavorazioni fondamentali [Characteristics and main processes]. In: “Il legno, vol 2” (Consorzio LL ed). Reggio Emilia, Italy, pp. 1136. [in Italian]
Gscholar
(11)
Hill CAS (2006)
Wood modification: chemical, thermal and other processes. John Wiley & Sons Ltd, Chichester, UK. pp. 239.
CrossRef | Gscholar
(12)
Hillis WE (1987)
Heartwood and tree exudates. Springer-Verlag, New York, USA, pp. 268.
Online | Gscholar
(13)
IGN (2013)
Résultats d’inventaire forestier - résultats standards (campagnes 2008 à 2012) [Results of forest inventory - standard results (campaigns from 2008 to 2012)]. Tome national version régions administratives. Service de l’inventaire forestier et statistique, Institut National de l’Information Géographique et Forestière (IGN), Sante Mandé, Paris, France. [in French]
Gscholar
(14)
INFC (2007)
Le stime di superficie 2005. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio [Estimating forest area 2005. First part]. In: “Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio” (Tabacchi G, De Natale F, Di Cosmo L, Floris A, Gagliano C, Gasparini P, Genchi L, Scrinzi G, Tosi V eds). MiPAF, Corpo Forestale dello Stato, Ispettorato Generale, CRA-ISAFA, Trento, Italy, pp. 409.
Online | Gscholar
(15)
Jalas J, Suominen J (1976)
Atlas Florae Europaeae: distribution of vascular plants in Europe (vol 3). Salicaceae to Balanophoraceae. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki, Finland, pp. 128. [ISBN 951-9108-02-5]
Gscholar
(16)
Kartal SN, Unsal O, Yilgor N (2001)
Physical, mechanical, and chemical properties of steamed beech wood. (Fundamental Disciplines). Forest Products Journal 51 (11-12): 89-93.
Online | Gscholar
(17)
Kollman F (1936)
Technologie des Holzes und der Holzwerkstoffe [Wood technology and wood-based materials]. Springer Verlag, Berlin, Germany, pp. 346. [in German]
Gscholar
(18)
Kollman F, Schneider A (1963)
Über das Sorptionsverhalten wärmebehandelter Hölzer [About the sorption behavior of heat-treated wood]. Holz als Roh- und Werkstoff 21: 77-85. [in German]
CrossRef | Gscholar
(19)
Mitchell PH (1988)
Irreversible property changes of small loblolly pine specimens heated in air, nitrogen or oxygen. Wood and Fiber Science 20 (3): 320-355.
Online | Gscholar
(20)
Pallardy SG (2008)
Physiology of woody plants. Academic Press, S. Diego, CA, USA, pp. 464.
Online | Gscholar
(21)
Reiterer A, Burgert I, Sinn G, Tschegg S (2002)
The radial reinforcement of the wood structure and its implication on mechanical and fracture mechanical properties. A comparison between two tree species. Journal of materials science 37: 935-940.
CrossRef | Gscholar
(22)
Rybarczyk W, Ganowicz R (1974)
A theoretical description of the swelling pressure of wood. Wood Science and Technology 8: 233-241.
CrossRef | Gscholar
(23)
Schmidt A (1986)
Untersuchungen Über die Ursachen der Verfärbungen von Eichenholz bei der technischen Trocknung [Studies on the discoloration causes of dried oak wood]. Holzforsch Holzverwert 38: 25-36. [in German]
Gscholar
(24)
Schwarz O (1993)
Quercus L. In: “Flora Europaea” (Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA eds). Cambridge University Press, Cambridge, UK, pp. 72-76.
Gscholar
(25)
Sohar K, Vitasb A, Läänelaida A (2012)
Sapwood estimates of pedunculate oak (Quercus robur L.) in eastern Baltic. Dendrochronologia 30: 49-56.
CrossRef | Gscholar
(26)
Stamm AJ (1956)
Thermal degradation of wood and cellulose. Industrial and Engineering Chemistry 48(3): 413-417.
CrossRef | Gscholar
(27)
Stamm AJ, Burr H, Kline A (1946)
Staybwood - heat stabilized wood. Industrial and Engineering Chemistry 38 (6): 630-634.
CrossRef | Gscholar
(28)
Sundqvist B (2004)
Colour changes and acid formation in wood during heating. PhD thesis, Luleå University of Technology, Skellefteå, Sweden, pp. 115.
Gscholar
(29)
Sundqvist B, Morén T (2002)
The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. Holz als Roh- und Werkstoff 60: 375-376.
CrossRef | Gscholar
(30)
Taylor AM, Gartner BL, Morrel JJ (2002)
Heartwood formation and natural durability - a review. Wood and fiber science 34 (4): 587-611.
Online | Gscholar
(31)
TAPPI (1954)
Official Standard, T13-m54. Technical Association of Pulp and Paper Industry, New York, USA.
Gscholar
(32)
Terziev N (1995)
Migration of low-molecular sugars and nitrogenous compounds in Pinus sylvestris L. during kiln and air drying. Holzforschung 49: 565-574.
CrossRef | Gscholar
(33)
Tjeerdsma BF, Militz H (2005)
Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. European Journal of Wood and Wood Products 63 (2): 102-111.
CrossRef | Gscholar
(34)
Todaro L (2012)
Effect of steaming treatment on resistance to footprints in Turkey oak wood for flooring. European Journal of Wood and Wood Products 70 (1-3): 209-214.
CrossRef | Gscholar
(35)
Todaro L, Zuccaro L, Marra M, Basso B, Scopa A (2012a)
Steaming effects on selected wood properties of turkey oak by spectral analysis. Wood Science and Technology 46 (1-3): 89-100.
CrossRef | Gscholar
(36)
Todaro L, Zanuttini R, Scopa A, Moretti N (2012b)
Influence of combined hydrothermal treatments on selected properties of Turkey oak (Quercus cerris L.) wood. Wood Science and Technology 46 (1-3): 563-578.
CrossRef | Gscholar
(37)
Todaro L, Dichicco P, Moretti N, Auria M (2013)
Effect of combined steam and heat treatments on extractives and lignin in sapwood and heartwood of Turkey oak (Quercus cerris L.) wood. BioResources 8 (2): 1718-1730.
CrossRef | Gscholar
(38)
Tolvaj L, Molnar S (2006)
Colour homogenisation of hardwood species by steaming. Acta Silvatica & Lignaria Hungarica 2: 105-112.
Online | Gscholar
(39)
UNI-ISO-3130 (1985)
Legno. Determinazione dell’umidità per le prove fisiche e meccaniche [Wood. Determination of moisture content for physical and mechanical tests]. Ente Nazionale Italiano di Unificazione, Milan, Italy, pp. 2. [in Italian]
Gscholar
(40)
UNI-ISO-3131 (1985)
Legno. Determinazione della massa volumica per le prove fisiche e meccaniche [Wood. Determination of density for physical and mechanical tests]. Ente Nazionale Italiano di Unificazione, Milan, Italy, pp. 4. [in Italian]
Gscholar
(41)
UNI-ISO-3787 (1985)
Legno. Metodi di prova. Determinazione della resistenza a compressione parallela alla fibratura [Wood. Determination of ultimate stress in compression parallel to grain]. Ente Nazionale Italiano di Unificazione, Milan, Italy, pp. 4. [in Italian]
Gscholar
(42)
UNI-ISO-4859 (1988)
Legno. Determinazione del rigonfiamento radiale e tangenziale [Wood. Determination of radial and tangential swelling]. Ente Nazionale Italiano di Unificazione, Milan, Italy, pp. 4. [in Italian]
Gscholar
(43)
UNI-ISO-4860 (1988)
Legno. Determinazione del rigonfiamento volumetrico [Wood. Determination of total swelling]. Ente Nazionale Italiano di Unificazione, Milan, Italy, pp. 6. [in Italian]
Gscholar
(44)
Yildiz S, Gezer ED, Yildiz ÜC (2006)
Mechanical and chemical behaviour of spruce wood modified by heat. Build Environmental 41(12): 1762-1766.
CrossRef | Gscholar
(45)
Zaman A, Alen R, Kotilainen R (2000)
Thermal behavior of Pinus sylvestris and Betula pendula at 200-230 °C. Wood and Fiber Science 32 (2): 138-143.
Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info