*
 

iForest - Biogeosciences and Forestry

*

The combined effects of Pseudomonas fluorescens CECT 844 and the black truffle co-inoculation on Pinus nigra seedlings

José Alfonso Dominguez-Nuñez (1)   , Marcelina Medina (1), Marta Berrocal-Lobo (1), Analía Anriquez (2), Ada Albanesi (2)

iForest - Biogeosciences and Forestry, Volume 8, Issue 5, Pages 624-630 (2015)
doi: https://doi.org/10.3832/ifor1334-007
Published: Jan 08, 2015 - Copyright © 2015 SISEF

Research Articles


The inoculation of forest seedlings with mycorrhizal fungi and rhizobacteria can improve the morphology and physiology of the seedlings and benefit the reforestation of Mediterranean areas and the reintroduction of mycorrhizal fungal inocula into these areas. Pinus nigra subsp. salzmannii,a forest component of the Mediterranean natural ecosystems, is currently used in the reforestation of Mediterranean regions. Its roots are able to form an ectomycorrhizal symbiosis with the Ascomycetes fungus Tuber melanosporum Vitt., the black truffle. The ecological, economic and social values of this ectomycorrhizal fungus is well known. Previously, we demonstrated that the inoculation of Pinus halepensis seedlings with Pseudomonas fluorescens CECT 844 rhizobacteria and the black truffle T. melanosporum improved the plant growth and N absorption of the seedlings. Furthermore, the addition of P. fluorescens CECT 844 doubled the rate of mycorrhization of T. melanosporum. In the present work, P. nigra seedlings were produced in a nursery under well-watered conditions. We studied the morphophysiological response of these seedlings to a combined T. melanosporum and/or a rhizobacteria P. fluorescens CECT 844 inoculation. Five months after inoculation, the growth parameters (seedling height, basal diameter, and shoot and root dry weight), mycorrhizal colonization, water parameters (osmotic potential at both full and zero turgor and modulus of elasticity), and the total contents and concentrations of N, P, and K in the seedlings roots and shoots were measured. The root growth potentials were subsequently estimated. The addition of P. fluorescens CECT 844 did not significantly improve the mycorrhizal colonization by T. melanosporum on P. nigra seedlings. Additionally, the P. fluorescens inoculation caused few significant improvements in the growth and water parameters. Moreover, apparently opposing effects were observed between the two inoculations regarding the seedlings P absorption. We discuss whether P. fluorescens CECT 844 could act as a Mycorrhizal Helper Bacterium (MHB) through different mechanisms depending on the environmental conditions.

  Keywords


Rhizobacteria, Black Truffle, Mycorrhiza, Mycorrhiza Helper Bacteria

Authors’ address

(1)
José Alfonso Dominguez-Nuñez
Marcelina Medina
Marta Berrocal-Lobo
ETSI Mountains, Polytechnic University of Madrid, Av. Ciudad Universitaria s/n, E-28040 Madrid (Spain)
(2)
Analía Anriquez
Ada Albanesi
Faculty of Agronomy and Agroindustries, Nacional University of Santiago de Estero, Av. Belgrano (S) 1912, Santiago del Estero (Argentina)

Corresponding author

 
José Alfonso Dominguez-Nuñez
josealfonso.dominguez@upm.es

Citation

Dominguez-Nuñez JA, Medina M, Berrocal-Lobo M, Anriquez A, Albanesi A (2015). The combined effects of Pseudomonas fluorescens CECT 844 and the black truffle co-inoculation on Pinus nigra seedlings. iForest 8: 624-630. - doi: 10.3832/ifor1334-007

Academic Editor

Gianfranco Minotta

Paper history

Received: Apr 30, 2014
Accepted: Sep 11, 2014

First online: Jan 08, 2015
Publication Date: Oct 01, 2015
Publication Time: 3.97 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 26483
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 20776
Abstract Page Views: 1065
PDF Downloads: 3704
Citation/Reference Downloads: 22
XML Downloads: 916

Web Metrics
Days since publication: 3389
Overall contacts: 26483
Avg. contacts per week: 54.70

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2015): 5
Average cites per year: 0.83

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Agerer R (2012)
Colour atlas of ectomycorrhizae (15th edn). Ed. Einhorn-Verlay, Schwäbisch Gmünd, Munich, Germany.
Gscholar
(2)
Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P, Saltarelli R, Zambonelli A, Stocchi V (2007)
Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology 9: 2234-2246.
CrossRef | Gscholar
(3)
Boiero L, Perrig D, Masciarelli O, Pena C, Cassán F, Luna V (2007)
Phytohormone production by strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology 74: 874-880.
CrossRef | Gscholar
(4)
Bolton HJ, Fredickson JK, Elliott LF (1993)
Microbial ecology of the rhizosphere. In: “Soil Microbial Ecology” (Metting FBJ ed). Marcel Dekker, New York, USA, pp. 27-63.
Online | Gscholar
(5)
Bowman WD, Roberts SW (1985)
Seasonal changes in tissue elasticity in chaparral shrubs. Physiologia Plantarum 65: 233-236.
CrossRef | Gscholar
(6)
Brule C, Frey-Klett P, Pierrat JC, Courrier S, Gerard F, Lemoine MC, Rousselet JL, Sommer J, Garbaye J (2001)
Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biology and Biochemistry 33: 1683-1694.
CrossRef | Gscholar
(7)
Caravaca F, Alguacil MM, Azcón R, Parladé J, Torres P, Roldán A (2005)
Establishment of two ectomycorrhizal shrub species in a semiarid site after in situ amendment with sugar beet, rock phosphate, and Aspergillus níger. Microbial Ecology 49: 73-82.
CrossRef | Gscholar
(8)
Chanway CP (1997)
Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. Forest Science 43: 99-112.
Online | Gscholar
(9)
Cheung YNS, Tyree MT, Dainty J (1975)
Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations. Canadian Journal of Botany 53: 1342-1346.
CrossRef | Gscholar
(10)
Citterio B, Malatesta M, Battistelli S, Marcheggiani F, Baffone W, Saltarelli R, Stocchi V, Gazzanelli G (2001)
Possible involvement of Pseudomonas fluorescens and Bacillaceae in structural modifications of Tuber borchii fruit bodies. Canadian Journal of Microbiology 47 (3): 264-268.
CrossRef | Gscholar
(11)
Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007)
The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist 175: 743-755.
CrossRef | Gscholar
(12)
Domínguez-Nuñez JA (2002)
Aportaciones de la micorrizacion artificial con trufa negra en planta forestal [Contributions of Black Truffle mycorrhization to ìforest plants]. PhD thesis, Department of Silvopasciculture, Politechnic University of Madrid, Madrid, Spain, pp. 402. [in Spanish]
Gscholar
(13)
Domínguez JA, Lopez C, Rodríguez Barreal JA, Saiz de Omeñaca JA (2003)
Caracterización de rodales truferos en la comunidad valenciana [Characterization of forest stands producers of black truffle in Valencia (Spain)]. Ecología 17: 181-190. [in Spanish]
Gscholar
(14)
Domínguez JA, Selva J, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006)
The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. Forest Ecology and Management 231: 226-233.
CrossRef | Gscholar
(15)
Domínguez JA, Planelles R, Rodríguez Barreal JA, Saiz de Omeñaca JA (2008)
The effect of Tuber melanosporum Vitt. mycorrhization on growth, nutrition, and water relations of Quercus petraea Liebl., Quercus faginea Lamk., and Pinus halepensis Mill. seedlings. New Forests 35: 159-171.
CrossRef | Gscholar
(16)
Dominguez JA, Martin A, Anriquez A, Albanesi A (2012)
The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 22 (6): 429-436.
CrossRef | Gscholar
(17)
Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005)
Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist 165: 317-328.
CrossRef | Gscholar
(18)
Frey-Klett P, Garbaye J, Tarkka M (2007)
The mycorrhiza helper bacteria revisited. New Phytologist 176: 22-36.
CrossRef | Gscholar
(19)
Frouxa F, Huca R, Ducreya M, Dreyerb E (2002)
Xylem hydraulic efficiency versus vulnerability in seedlings of four contrasting Mediterranean tree species (Cedrus atlantica, Cupressus sempervirens, Pinus halepensis and Pinus nigra). Annals of Forest Science 59: 409-418.
CrossRef | Gscholar
(20)
Garbaye J, Duponnois R (1993)
Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Symbiosis 14: 335-344
Gscholar
(21)
García-Montero LG, Manjón JL, Martín-Fernández S, Di Massimo G (2007)
Problems of using pines in Tuber melanosporum culture: soils and truffle harvest associated with Pinus nigra and P. sylvestris. Agroforestry Systems 70: 243-249.
CrossRef | Gscholar
(22)
Grayston SJ, Vaughan D, Jones D (1996)
Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology 5: 29-56.
CrossRef | Gscholar
(23)
Heinonsalo J, Frey-Klett P, Pierrat JC, Churin JL, Vairelles J, Garbaye J (2004)
Fate, tree growth effect and potential impact on soil microbial communities of mycorrhizal and bacterial inoculation in a forest plantation. Soil Biology and Biochemistry 36 (2): 211-216.
CrossRef | Gscholar
(24)
Jones MM, Turner NC (1980)
Osmotic adjustment in expanding and fully expanded leves of sunlower in response to water deficits. Australian Journal of Plant Physiology 7: 181-192.
CrossRef | Gscholar
(25)
Karabaghli C, Frey-Klett P, Sotta B, Bonnet M, Le Tacon F (1998)
In vitro effects of Laccaria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of derooted shoot hypocotyls of Norway spruce. Tree Physiology 18: 103-111.
CrossRef | Gscholar
(26)
Martínez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000)
Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiology 20: 131-138.
CrossRef | Gscholar
(27)
Marulanda A, Barea JM, Azcon R (2006)
An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microbial Ecology 52: 670-678.
CrossRef | Gscholar
(28)
Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007)
Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environmental Microbiology 9 (2): 425-434.
CrossRef | Gscholar
(29)
Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006)
Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980.
CrossRef | Gscholar
(30)
Olsson PA, Jakobsen I, Wallander H (2002)
Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: “Mycorrhizal ecology” (Van der Heijden MGA, Sanders IR eds). Springer, Berlin, Germany, pp. 93-115.
Gscholar
(31)
Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Dreyfus B, Duponnois R (2009)
Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant and Soil 320: 169-179.
CrossRef | Gscholar
(32)
Posta K, Marschner H, Rómheld V (1994)
Manganese reduction in the rhizosphere of mycorrhizal and non mycorrhizal maize. Mycorrhiza 5: 119-124.
CrossRef | Gscholar
(33)
Pirazzi R (1986)
Mycorrhization of Pinus halepensis Mill. and Pinus nigra Arnold with Tuber melanosporum Vitt. and Tuber brumale Vitt. var. moscatum Ferry. Micologia Italiana 15 (1): 5-11.
Gscholar
(34)
Probanza A, Mateos JL, Lucas GJA, Ramos B, De Felipe MR, Gutierrez MFJ (2001)
Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection. Microbial Ecology 41: 140-148.
CrossRef | Gscholar
(35)
Reyna S (2007)
Truficultura. Fundamentos y técnicas [Trufficulture. Fundamentals and techniques]. Ed. Mundi-Prensa, Madrid, Spain, pp. 688. [in Spanish]
Gscholar
(36)
Rincón A, Ruiz-Díez B, García-Fraile S, Lucas-García JA, Fernández-Pascual M, Pueyo JJ, De Felipe MR (2005)
Colonization of Pinus halepensis roots by Pseudomonas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiology Ecology 51: 303-311.
CrossRef | Gscholar
(37)
Rincón A, de Felipe MR, Fernández-Pascual M (2007)
Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18: 23-32.
CrossRef | Gscholar
(38)
Rincón A, Valladares F, Gimeno TE, Pueyo JJ (2008)
Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiology 28: 1693-1701.
CrossRef | Gscholar
(39)
Ritchie G (1985)
Root growth potential: principles, procedures and predictive ability. In: “Evaluating seedling quality. Principles, procedures and predictive abilities of major test” (Duryea M ed). Forest Research Lab, Oregon State University, Corvallis, OR, USA, pp. 93-106.
Gscholar
(40)
Rivera C, Blanco D, Oria R, Venturini ME (2010)
Diversity of culturable microorganisms and occurrence of Listeria monocytogenes and Salmonella spp. in Tuber aestivum and Tuber melanosporum ascocarps. Food Microbiology 27: 286-293.
CrossRef | Gscholar
(41)
Robichaux RH (1984)
Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia (Berlin) 65: 75-81.
CrossRef | Gscholar
(42)
Sardans J, Rodá F, Peñuelas J (2006)
Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. ballota and Pinus halepensis on different soils and under different competitive pressure. Trees 20: 619-632.
CrossRef | Gscholar
(43)
Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965)
Sap pressure in vascular plants. Science 148: 339-346.
CrossRef | Gscholar
(44)
Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR (2009)
Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology 10 (5): R51.
CrossRef | Gscholar
(45)
Simard SW, Jones MD, Durral DM (2002)
Carbon and nutrient fluxes within and between mycorrhizal plants. In: “Mycorrhizal ecology” (van der Heijden MGA, Sanders I eds). Springer, Berlin, Germany, pp. 34-74.
CrossRef | Gscholar
(46)
Simpson DG, Ritchie GA (1997)
Does RGP predict field performance. A debate. New Forests 13 (1-3): 253-277.
CrossRef | Gscholar
(47)
Smith SE, Read DJ (1997)
Mycorrhizal symbiosis (2nd edn). Academic Press, London, UK, pp. 605.
Gscholar
(48)
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004)
Toward a systems approach to understanding plant cell walls. Science 306 (5705): 2206-2211.
CrossRef | Gscholar
(49)
Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P (2009)
Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiology 150: 2018-2029.
CrossRef | Gscholar
(50)
Tarka MT, Frey-Klett P (2008)
Mycorrhiza helper bacteria. In: “Mycorrhiza” (Varma A ed). Springer-Verlag, Berlin Heidelberg, Germany, pp. 113-132.
Gscholar
(51)
Tyree M, Hammel HT (1972)
The measurement of the turgor pressure and the water relations of plants by the pressure technique. Journal of Experimental Botany 23: 267-282.
CrossRef | Gscholar
(52)
Tyree M, Jarvis PG (1982)
Water in tissues and cells. In: “Encyclopedia of Plant Physiology, New Series, Vol. 12B, Physiological Plant Ecology II” (Lange OL, Nobel PS, Osmond CB, Ziegler H eds). Springer-Verlag, Berlin, Germany, pp. 36-77.
Gscholar
(53)
Villar-Salvador P, Caña L, Peñuelas J, Carrasco I, Domínguez S, Renilla I (1997)
Relaciones hídricas y potencial de formación de raíces en plántulas de Pinus halepensis Mill. sometidas a diferentes niveles de endurecimientos por estrés hídrico [Water relations and root formation potential in Pinus halepensis seedlings subject to different levels of water stress hardening]. Journal of the Spanish Society of Forest Science 4: 81-92. [in Spanish]
Gscholar
(54)
Vorwerk S, Somerville S, Somerville C (2004)
The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science 9 (4): 203-209.
CrossRef | Gscholar
 

This website uses cookies to ensure you get the best experience on our website. More info