iForest - Biogeosciences and Forestry


Physical and mechanical characteristics of poor-quality wood after heat treatment

Manuela Romagnoli (1)   , Daniela Cavalli (2), Rinaldo Pernarella (3), Roberto Zanuttini (4), Marco Togni (5)

iForest - Biogeosciences and Forestry, Volume 8, Issue 6, Pages 884-891 (2015)
doi: https://doi.org/10.3832/ifor1229-007
Published: May 22, 2015 - Copyright © 2015 SISEF

Research Articles

Poor-quality Corsican pine (Pinus nigra subsp. laricio (Poir.) Maire) and Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) wood samples were heat treated with the aim of testing the improvement of wood quality that could increase their economic value. Wood properties were measured to assess quality in treated and non-treated materials, including density, hardness, anti-swelling efficiency (ASE), modulus of elasticity (MOE), modulus of rupture (MOR), and compression strength. The results showed higher dimensional stability in heat-treated wood, yet mechanical performance in compression and bending strength were only marginally affected by loss of density. Despite having a relatively low density after heat treatment, Corsican pine sapwood has potential in manufacturing higher-value products. In contrast, heat treatment applied to Douglas fir wood did not appear economically viable; insufficient differences were detected between the naturally desirable characteristics of this species and heat-treated samples.


Thermowood, Density, Compressive Strength, Bending Strength, Sapwood, Wood Quality, Douglas Fir, Corsican Pine

Authors’ address

Manuela Romagnoli
DAFNE, University of Tuscia, Viterbo (Italy)
Daniela Cavalli
DIBAF, University of Tuscia, Viterbo (Italy)
Rinaldo Pernarella
Margaritelli Farm, Perugia (Italy)
Roberto Zanuttini
Agroselviter, Torino University (Italy)
Marco Togni
GEESAF, Firenze University (Italy)

Corresponding author

Manuela Romagnoli


Romagnoli M, Cavalli D, Pernarella R, Zanuttini R, Togni M (2015). Physical and mechanical characteristics of poor-quality wood after heat treatment. iForest 8: 884-891. - doi: 10.3832/ifor1229-007

Academic Editor

Giacomo Goli

Paper history

Received: Dec 31, 2013
Accepted: Apr 01, 2015

First online: May 22, 2015
Publication Date: Dec 01, 2015
Publication Time: 1.70 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 27280
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 21079
Abstract Page Views: 1174
PDF Downloads: 3812
Citation/Reference Downloads: 22
XML Downloads: 1193

Web Metrics
Days since publication: 3295
Overall contacts: 27280
Avg. contacts per week: 57.95

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2015): 9
Average cites per year: 1.50


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

Alen R, Kotilainen R, Zaman A (2002)
Thermochemical behaviour of Norway Spruce (Picea abies) at 180-225 °C. Wood Science and Technology 36 (2): 163-171.
CrossRef | Gscholar
Arnold M (2010)
Effect of moisture on the bending properties of thermally modified beech and spruce. Journal of Material Science 45 (3): 669-680.
CrossRef | Gscholar
Ates S, Akyildiz MH, Ozdemir H (2009)
Effects of heat treatment on Calabrian pine (Pinus brutia Ten.) wood. BioResources 4 (3): 1032-1043.
Online | Gscholar
Bakar BFA, Hiziroglu S, Tahir PM (2013)
Properties of some thermally modified wood species. Materials and Design 43: 348-355.
CrossRef | Gscholar
Bal BC (2013)
Effetcs of hest treatment on the physical properties of heartwood and sapwood of Cedrus libani. Bioresources 8 (1): 211-219.
CrossRef | Gscholar
Bal BC (2014)
Some physical and mechanical properties of thermally modified juvenile and mature black pine wood. European Journal of Wood Products 72 (1): 61-66.
CrossRef | Gscholar
Bekhta P, Niemz P (2003)
Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforshung 57 (5): 539-546.
CrossRef | Gscholar
Bengtsson C, Jermer J, Brem F (2002)
Bending strength of heat-treated spruce and pine timber. In: Proceedings of the Conference “International Research Group Wood Pre”. Cardiff (Wales, UK), 12-17 May 2002. Section 4 - Processes, no. IRG/WP 02-40242.
Online | Gscholar
Boonstra M, Van Acker J, Tjeerdsma B, Kegel E (2007)
Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituent. Annals of Forest Science 64 (7): 679-690.
CrossRef | Gscholar
Borrega M, Kärenlampi PP (2008)
Mechanical behaviour of heat-treated spurce (Picea abies Karst.) wood at constant moisture content and relative humidity. Holz als Roh und Werkstoff 66 (1): 63-69.
CrossRef | Gscholar
Borrega M, Kärenlampi PP (2010a)
Hygroscopicity of heat-treated Norway spruce (Picea abies) wood. European Journal of Wood and Wood Products 68 (2): 233-235.
CrossRef | Gscholar
Borrega M, Kärenlampi PP (2010b)
Three mechanisms affecting the mechanical properties of spruce wood dried at high temperatures. Journal of Wood Science 56 (2): 87-94.
CrossRef | Gscholar
Burgos F, Rolleri A (2012)
Effect of hydro- and hygro-thermal treatments on some wood properties of Pinus radiata and Pseudotsuga menziesii. Drvina Industrija 63 (3): 211-215.
CrossRef | Gscholar
Cao Y, Lu J, Huang R, Jiang J (2012)
Increased dimensional stability of Chinese fir through steam-heat treatment. European Journal of Wood Products 70 (4): 441-444.
CrossRef | Gscholar
Epmeier H, Kliger R (2005)
Experimental study of material properties of modified Scots pine. Holz als Roh und Werkstoff 63 (6): 430-436.
CrossRef | Gscholar
Esteves B, Marques AV, Domingos I, Pereira H (2007a)
Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 41 (3): 193-207.
CrossRef | Gscholar
Esteves B, Domingos I, Pereira H (2007b)
Improvement of technological quality of eucalypt wood by heat treatment in air at 170-200 °C. Forest Products Journal 57 (1-2): 47-52.
Online | Gscholar
Esteves BM, Pereira HM (2008)
Wood modification by heat treatment: a review. BioResources 4 (1): 370-404.
Online | Gscholar
Esteves B, Velez Marques A, Domingos I, Pereira H (2008)
Heat-induced color changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 42 (5): 369-384.
CrossRef | Gscholar
Fernandes Diniz JMB, Gill MH, Castro JAAM (2004)
Hornification - its origin and interpretation in wood pulps. Wood Science and Technology 37 (6): 489-494.
CrossRef | Gscholar
Fioravanti M (1999)
Valutazione tecnologica dell’influenza delle pratiche selvicolturali sulla qualità del legno [Technological evaluation of the silvicoltural practices on wood quality]. In: “Il Legno di Castagno e di Douglasia della Toscana - Qualità del legno e selvicoltura”. Quaderno ARSIA 9/99, ARSIA Azienda Regionale per lo Sviluppo e l’innovazione nel Settore Agricolo-forestale, Firenze, Italy, pp. 23-39. [in Italian]
González-Peña MM, Curling SF, Hale MDC (2009)
On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degradation and Stability (94): 2184-2193.
CrossRef | Gscholar
Gunduz G, Korkut S, Korkut DS (2008)
The effects of heat treatment on physical and technological properties on surface roughness of Camiyani - Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresource Technology 99 (7): 2275-2280.
CrossRef | Gscholar
Hillis CAS (2006)
Wood modification. Chemical, thermal and other processes. John Wiley and Sons, Chichester, UK, pp. 260.
Johanson D, Moren T (2006)
The potential of colour measurement for strength pprediction of thermally treated wood. Holz als Roh und Werkstoff 64 (2): 104-110.
CrossRef | Gscholar
Kandem DP, Pizzi A, Jermannaud A (2002)
Durability of heat treated wood. Holz als Roh und Werkstoff 60 (1): 1-16.
CrossRef | Gscholar
Kocaefe D, Poncsak S, Tang J, Bouzara M (2010)
Effect of heat treatment on the mechanical properties of North America jack pine: thermogravimetric study. Journal of Materials Science 45 (3): 681-687.
CrossRef | Gscholar
Korkut S (2012)
Performance of three thermally treated tropical wood species commonly used in Turkey. Industrial Crops and Products 36 (1): 355-362.
CrossRef | Gscholar
Kortelainen SM, Antikairem T, Vitamieni P (2006)
The water absorption of sapwood and heartwood of Scots pine and and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C, 230 °C. Holz als Roh und Werkstoff 64 (2): 192-197.
CrossRef | Gscholar
Lachenbruch B, Johnson JR, Downes GM, Evans R (2010)
Relationships of density, microfibril angle, and sound velocity with stiffness strenght in mature wood of Douglas fir. Canadian Journal of Forest Research 40 (1): 55-64.
CrossRef | Gscholar
Larson P, Kretschmann D, Clark A, Isebandsm JG (2001)
Formation and properties of juvenile wood in southern pines. A synopsis. Gen. Tech. Rep. FPL-GTR-129, Forest Products Laboratory, USDA Forest Service, Madison, WI, USA, pp. 42.
Leijten AJM (2004)
Heat treated wood and the influence on the impact bending strength. Heron (49): 349-359.
Online | Gscholar
Li XJ, Cai JY, Mou QY, Wu YA, Liu Y (2011)
Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood. Advanced Materials Research 197: 90-95.
CrossRef | Gscholar
Metsä-Kortelainen S (2011)
Difference between sapwood and heartwood of thermally modified Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) under water and decay exposure. VTT publications 771: 1-58.
Militz H (2002)
Heat treatment technologies in Europe: scientific background and technological state-of-art. In: Proceedings of the Conference “Enhancig the durability of lumber and engineered wood products”. Kissimmee (Orlando, FL, USA) 11-13 Feb 2002. Forest Products Society, Madison, PA, USA, pp. 19.
Militz H (2008)
Processes and properties of thermally modified wood manufactured in Europe. In: “Development of Commercial Wood Preservatives. Efficacy, Environmental and Health Issues” (Schultz TP, Militz H, Freeman M, Goodell B, Nicholas DD eds). ACS Symposium Series, Oxford University Press, Oxford, UK, pp. 372-388.
Online | Gscholar
Mohareb A, Sirmah P, Desharnais L, Dumarçay S, Pétrissans M, Gérardin P (2010)
Effect of extractives on conferred and natural durability of Cupressus lusitanica heartwood. Annals of Forest Science 67 (5): 504-504.
CrossRef | Gscholar
Nardi Berti R (2006)
La struttura anatomica del legno ed il riconoscimento dei legnami italiani di più corrente impiego [Anatomical structure of wood and identification of the most common used wood in Italy] (2nd edn). Compagnia delle foreste, Firenze, Italy, pp 158. [in Italian]
Nocetti M, Brunetti M, Ducci F, Romagnoli M, Rozenberg P, Santi F (2012)
Phenotypic correlations among wood properties and growth in wild cherry plantations. Bioresources 7 (3): 3160-3174.
Online | Gscholar
Poncsak S, Kocaefe D, Younsi R (2011)
Improvement of the heat treatment of Jack pine (Pinus banksiana) using ThermoWood technology. European Journal of Wood Products 9 (2): 281-286.
CrossRef | Gscholar
Repellin V, Guyonnet R (2003)
Evaluation of heat treated beech by non-destructive testing. In: Proceedings of the “European Conference on Wood Modification”. Gand (Belgium) 3-4 Apr 2003. HAL, archives-ouverted.fr, France, pp.11.
Online | Gscholar
Romagnoli M, Spina S (2013)
Physical and mechanical wood properties of ring-shaken chestnut (Castanea sativa) trees. Canadian Journal of Forest Research 43 (2): 200-207.
CrossRef | Gscholar
Romagnoli M, Cavalli D, Spina S (2014)
Wood quality of chestnut: relationships between ring width, specific density and physical mechanical properties. Bioresources 9 (1): 1132-1147.
CrossRef | Gscholar
Santos JA (2000)
Mechanical behavior of Eucalyptus wood modified by heat. Wood Science and Technology 34 (1): 39-43.
CrossRef | Gscholar
Severo ETD, Calonego FW, Sansigolo CA (2012)
Physical and chemical changes in juvenile and mature woods of Pinus elliottii var. elliottii by thermal modification. European Journal of Wood and Wood Products 70: 741-747.
CrossRef | Gscholar
Shi JL, Kocaefe D, Zhang J (2007)
Mechanical behaviour of Québec wood species heat-treated using thermowood process. Holz als Roh- und Werkstoff (65): 255-259.
CrossRef | Gscholar
Srinivas K, Pandey KK (2012)
Effect of heat treatment on color changes, dimensional stability, and mechanical properties of wood. Journal of Wood Chemistry and Technology (32): 304-316.
CrossRef | Gscholar
Stamm A, Burr H, Kline A (1946)
Heat stabilized wood (Staybwood). Industrial and Engeneering Chemical Research 38 (6): 630-634.
CrossRef | Gscholar
Todaro L, Macchioni N (2011)
Wood properties of young Douglas-fir in Southern Italy: results over a 12-year post-thinning period. European Journal of Forest Research 130 (2): 251-261.
CrossRef | Gscholar
Todaro L, Zanuttini R, Scopa A, Moretti N (2012)
Influence of combined hydro-thermal treatments on selected properties of Turkey oak (Quercus cerris L.) wood. Wood Science and Technology 46 (1-3): 563-578.
Tremblay C, Baribeault J (2009)
Physical and mechanical properties of thermally modified aspen wood. In: Proceedings of the “European Conference on Wood Modification” (Englund F, Hill CAS, Militz H, Segerholm BK). Stockholm (Sweden) 27-29 Apr 2009, pp. 231-234.
UNI-EN-1534 (2011)
Pavimentazioni di legno - Determinazione della resistenza alla penetrazione - Metodo di prova [Wood flooring- determination of resistance to indentation - Test method]. Ente Italiano di Normazione, Milan, Italy. [in Italian]
UNI-ISO-3130 (1985)
Legno. Determinazione del contenuto di umidità per le prove fisiche e meccaniche [Wood. Determination of moisture content for pyisical and mechanical tests]. Ente Nazionale Italiano di Normazione, Milan, Italy, pp. 3. [in Italian]
UNI-ISO-3131 (1985)
Legno. Determinazione della massa volumica per le prove fisiche e meccaniche [Wood. Determination of density for physical and mechanical tests]. Ente Nazionale Italiano di Normazione, Milan, Italy, pp. 4. [in Italian]
UNI-ISO-3133 (1985)
Determinazione della resistenza a flessione statica del legno [Determination of ultimate strength in static bending]. Ente Nazionale Italiano di Normazione, Milan, Italy, pp. 3. [in Italian]
UNI-ISO-3787 (1985)
Legno. Metodi di prova. Determinazione della resistenza a compressione parallela alla fibratura [Wood. Test methods. Determination of ultimate stress in compression parallel to grain]. Ente Nazionale Italiano di Normazione, Milan, Italy. [in Italian]
Unsal O, Ayrilmis N (2005)
Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. Journal of Wood Science 51 (4): 405-409.
CrossRef | Gscholar
Welzbacher CR, Rapper A (2007)
Durability of thermally modified timber from industrial-scale processes in different use classes. Results from laboratory and field test. Wood Material Science and Engineering 2 (1): 4-14.
CrossRef | Gscholar
Welzbacher CR, Brischke C, Rapp AO (2007)
Influence of heat treatment temperature and duration on selected biological, mechanical, physical and optical properties od thermally modified timber. Wood Material Science Engineering 2 (2): 66-76.
CrossRef | Gscholar
Zaman A, Alen R, Kotilainen R (2000)
Thermal behavior of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200-230°. Wood Fiber Science 32 (2): 138-143.
Online | Gscholar
Zobel B, Sprague J (1998)
Juvenile wood in forest trees. Springer Verlag, Berlin, Heidelberg, Germany, pp. 300.
Zobel BJ, Van Buijtenen JP (1989)
Wood variation: its causes and control. Springer Verlag Gmbh, Berlin, Heidelberg, Germany, pp. 363.
Online | Gscholar

This website uses cookies to ensure you get the best experience on our website. More info