iForest - Biogeosciences and Forestry


The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement

D Maniatis (1)   , L Saint André (2-3), M Temmerman (4), Y Malhi (1), H Beeckman (5)

iForest - Biogeosciences and Forestry, Volume 4, Issue 4, Pages 150-159 (2011)
doi: https://doi.org/10.3832/ifor0575-004
Published: Aug 11, 2011 - Copyright © 2011 SISEF

Research Articles

Wood specific gravity (WSG) is an important biometric variable for aboveground biomass calculations in tropical forests. Sampling a sufficient number of trees in remote tropical forests to represent the species and size distribution of a forest to generate information on WSG can be logistically challenging. Several thousands of wood samples exist in xylaria around the world that are easily accessible to researchers. We propose the use of wood samples held in xylaria as a valid and overlooked option. Due to the nature of xylarium samples, determining wood volume to calculate WSG presents several challenges. A description and assessment is provided of five different methods to measure wood sample volume: two solid displacement methods and three liquid displacement methods (hydrostatic methods). Two methods were specifically developed for this paper: the use of laboratory parafilm to wrap the wood samples for the hydrostatic method and two glass microbeads devices for the solid displacement method. We find that the hydrostatic method with samples not wrapped in laboratory parafilm is the most accurate and preferred method. The two methods developed for this study give close agreement with the preferred method (r 2 > 0.95). We show that volume can be estimated accurately for xylarium samples with the proposed methods. Additionally, the WSG for 53 species was measured using the preferred method. Significant differences exist between the WSG means of the measured species and the WSG means in an existing density database. Finally, for 4 genera in our dataset, the genus-level WSG average is representative of the species-level WSG average.


Wood specific gravity, Aboveground biomass, Dry xylarium samples, Tropical forests, Congo basin forest

Authors’ address

D Maniatis
Y Malhi
Environmental Change Institute, School of Geography and the Environment, Dyson Perrins Building, South Parks Road, OX1 3QY Oxford (UK)
L Saint André
CIRAD, UMR Eco & Sols, Ecologie Fonctionnelle, Biogéochimie des Sols & Agroécosystèmes, place Viala, F-34060 Montpellier (France)
L Saint André
INRA, UR BEF - Biogéochimie des Ecosystèmes Forestiers, F-54280, Champenoux (France)
M Temmerman
Walloon Agricultural Research Centre (CRA-W), chaussée de Namur 146, B-5030 Gembloux (Belgium)
H Beeckman
Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Leuvense Steenweg 13, B-3080 Tervuren (Belgium)

Corresponding author



Maniatis D, Saint André L, Temmerman M, Malhi Y, Beeckman H (2011). The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement. iForest 4: 150-159. - doi: 10.3832/ifor0575-004

Academic Editor

Marco Borghetti

Paper history

Received: Sep 15, 2010
Accepted: May 16, 2011

First online: Aug 11, 2011
Publication Date: Aug 11, 2011
Publication Time: 2.90 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 31654
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 24570
Abstract Page Views: 1568
PDF Downloads: 4099
Citation/Reference Downloads: 32
XML Downloads: 1385

Web Metrics
Days since publication: 4672
Overall contacts: 31654
Avg. contacts per week: 47.43

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Nov 2020)

Total number of cites (since 2011): 12
Average cites per year: 1.20


Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

ASTM International (2011)
ASTM D2395 - 07ae1 Standard test methods for specific gravity of wood and wood-based materials. Web page.
Online | Gscholar
Baker TR, Philips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Susan G, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patiño S, Pitman NCA, Silva JNM, Vásquez Martínez R (2004)
Variation in wood density determines spatial patterns in Amazonian forest plots. Global Change Biology 10: 1-18.
CrossRef | Gscholar
Beeckman H (2008)
A xylarium for the sustainable management of biodiversity: the wood collection of the royal museum for central Africa, Tervuren, Belgium. Le bulletin de l’APAD no. 26, Gestion des Ressources Naturelles. Participations et médiations.
Online | Gscholar
Beeckman H (2007)
Wood. Collections of the Royal Museum for central Africa. pp.112. []
Bergsten U, Lindeberg J, Rindby A, Evans R (2001)
Batch measurements of wood density on intact or prepared drill cores using x-ray microdensitometry. Wood Science and Technology 35: 435-452.
CrossRef | Gscholar
Cameron JF, Berry PF, Phillips EWJ (1959)
The determination of wood density using beta rays. Holzforschung 13: 78-84.
CrossRef | Gscholar
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005)
Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (1): 87-99.
CrossRef | Gscholar
Dutilleul P, Herman M, Avella-Shawn T (1998)
Growth rate effects among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies). Canadian Journal of Forest Research 28: 56-68.
CrossRef | Gscholar
Fearnside PM (1997)
Wood density for estimating forest biomass in the Brazilian Amazon. Forest Ecology and Management 90: 59-87.
CrossRef | Gscholar
Hacke UG, Sperry JS, Pittermann J (2000)
Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology 1 (1): 31-41.
CrossRef | Gscholar
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001)
Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457-461.
CrossRef | Gscholar
Houghton R (2005)
Tropical deforestation as a source of greenhouse-gas emissions. In: “Tropical deforestation and climate change” (Moutinho P, Schwartzmann S eds). IPAM, Instituto de Pesquisa Ambiental da Amazônia, Belém, Pará, Brazil - Environmental Defense, Washington DC, USA.
King DA, Davies SJ, Nur Supardi MN, Tan S (2005)
Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology 19: 445-453.
CrossRef | Gscholar
Kollmann F (1951)
Technologie des holzes und der holzwerkstoffe. Zweite auflage. I. Band. Springer-Verlag, Berlin - Göttingen, Heidelberg - Bergmann JF, München, pp. 1050.
Leroy C, Saint-André L, Auclair D (2007)
Practical methods for non-destructive measurement of tree leaf area. Agroforestry Systems 71: 99-108.
CrossRef | Gscholar
Lindgren LO (1991)
The accuracy of medical CAT-scan images for non-destructive density measurements in small volume elements within solid wood. Wood Science and Technology 25 (6): 425-432.
CrossRef | Gscholar
Mayer DG, Butler DG (1993)
Statistical validation. Ecological Modelling 68 (1-2): 21-32.
CrossRef | Gscholar
Mothe F, Duchanois G, Zannier B, Leban JM (1998)
Analyse microdensitométrique appliquée au bois: méthode de traitement des données utilisée à l’INRA-ERQB (programme CERD). Annales des Sciences Forestières 55 (3): 301-313.
CrossRef | Gscholar
Muller-Landau HC (2004)
Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36 (1): 20-32.
CrossRef | Gscholar
Nogueira EM, Nelson BW, Fearnside PM (2005)
Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management 208: 261-286.
CrossRef | Gscholar
Nogueira EM, Fearnside PM, Nelson BW, França MB (2007)
Wood density in Brazil’s “arc of deforestation”: implications for biomass and flux of carbon from land-use change in Amazonia, Brazil. Forest Ecology and Management 248: 119-135.
CrossRef | Gscholar
Nuopponen MH, Birch GM, Sykes RJ, Lee SJ, Stewart D (2006)
Estimation of wood density and chemical composition by means of Diffuse Reflectance Mid-Infrared Fourier Transform (DRFT-MIR) spectroscopy. Journal of Agricultural and Food Chemistry 54: 34-40.
CrossRef | Gscholar
Patiño S, Lloyd J, Paiva R, Baker TR, Quesada CA, Mercado LM, Schmerler J, Schwarz M, Santos AJ, Aguilar A, Czimczik CI, Gallo J, Horna V, Hoyos EJ, Jimenez EM, Palomino W, Peacock J, Peña-Cruz A, Sarmiento C, Sota A, Turriago JD, Villanueva B, Vitzthum P, Alvarez E, Arroyo L, Baraloto C, Bonal D, Chave J, Costa AC, Herrera R, Higuchi N, Killeen T, Leal E, Luizão F, Meir P, Monteagudo A, Neil D, Núñez-Vargas P, Peñuela MC, Pitman N, Priante Filho N, Prieto A, Panfil SN, Rudas A, Salomão R, Silva N, Silveira M, Soares dealmeida S, Torres-Lezama A, Vásquez-Martínez R, Vieira I, Malhi Y, Phillips OL (2009)
Branch xylem density variations across the Amazon Basin. Biogeosciences 6 (4): 545-568.
CrossRef | Gscholar
Pliura A, Zhang SY, MacKay J, Bousquet J (2007)
Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. Forest Ecology and Management 238: 92-106.
CrossRef | Gscholar
Polge H (1966)
Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d’échantillons prélevés à la tarière sur des arbres vivants - Applications dans les domaines technologique et physiologique. Ph.D. Dissertation, Université de Nancy-1, Champenoux, France, pp. 215.
Rabier F, Temmerman M, Böhm T, Hartmann H, Daugberg Jensen P, Rathbauer J, Carrasco J, Fernández M (2006)
Particle density determination of pellets and briquettes. Biomass and Bioenergy 30: 954-963.
CrossRef | Gscholar
Simpson W, TenWolde A (1999)
Physical properties and moisture relations of wood. In: “Forest products laboratory. Wood handbook - wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113, Forest Products Laboratory, USDA Forest Service, Madison, WI, USA, pp. 463.
Simpson WT (1993)
Specific gravity, moisture content, and density relationships for wood. Gen. Tech. Rep. FPL-GTR-76, Forest Products Laboratory, USDA Forest Service, Madison, WI, USA, pp. 13.
Slik JWF (2004)
El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141: 114-120.
CrossRef | Gscholar
Slik JW (2006)
Estimating species-specific wood density from the genus average in Indonesian trees. Journal of Tropical Ecology 22 (04): 481.
CrossRef | Gscholar
Stern WL (1988)
Index xylariorum. Institutional wood collections of the World 3. IAWA Bulletin 9: 203-252.
Via BK, Fasina O, Pan H (2011)
Assessment of pine biomass density through mid-infrared spectroscopy and multivariate modeling. Bioresources 6: 807-822.
Via BK, So CL, Shupe TF, Stine M, Groom LH (2005)
Ability of near infrared spectroscopy to monitor air-density density distribution and variation of wood. Wood Fiber Science 37: 394-402.
Online | Gscholar
Via BK, Shupe TF, Groom LH, Stine M, So CL (2003)
Multivariate modelling of density, strength and stiffness from near infrared spectra for mature, juvenile and pith wood of longleaf pine (Pinus palustris). Journal of Near Infrared Spectroscopy 11: 365-378.
CrossRef | Gscholar
Wiemann MC, Williamson GB (2002)
Geographic variation in wood specific gravity: effects of latitude, temperature and precipitation. Wood and Fibre Science 34 (1): 96-107.
Online | Gscholar
Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009)
Global wood density database. Dryad.
Online | Gscholar
Zobel BJ, van Buijtenen JP (1989)
Wood variation: its causes and control. Springer-Verlag, Berlin, Germany.

This website uses cookies to ensure you get the best experience on our website. More info