*

Remote sensing support for post fire forest management

P Corona (1), A Lamonaca (1), G Chirici (2)   

iForest - Biogeosciences and Forestry, Volume 1, Issue 1, Pages 6-12 (2008)
doi: https://doi.org/10.3832/ifor0305-0010006
Published: Feb 28, 2008 - Copyright © 2008 SISEF

Review Papers


Monitoring of forest burnt areas has several aims: to locate and estimate the extent of such areas; to assess the damages suffered by the forest stands; to check the ability of the ecosystem to naturally recover after the fire; to support the planning of reclamation interventions; to assess the dynamics (pattern and speed) of the natural recovery; to check the outcome of any eventual restoration intervention. Remote sensing is an important source of information to support all such tasks. In the last decades, the effectiveness of remotely sensed imagery is increasing due to the advancement of tools and techniques, and to the lowering of the costs, in relative terms. For an effective support to post-fire management (burnt scar perimeter mapping, damage severity assessment, post-fire vegetation monitoring), a mapping scale of at least 1:10000-1:20000 is required: hence, the selection of remotely sensed data is restricted to aerial imagery and to satellite imagery characterized by high (HR) and, above all, very high (VHR) spatial resolution. In the last decade, HR and VHR passive (optical) remote sensing has widespread, providing affordable multitemporal and multispectral pictures of the considered phenomena, at different scales (spatial, temporal and spectral resolutions) with reference to the monitoring needs. In the light of such a potential, the integration of GPS field survey and imagery by light aerial vectors or VHR satellite is currently sought as a viable option for the post-fire monitoring.

  Keywords


Burnt scar perimeter mapping, Post-fire vegetation monitoring, Damage severity assessment, High and very high spatial resolution satellite sensors

Authors’ address

(1)
P Corona
A Lamonaca
Dipartimento di Scienze dell’Ambiente Forestale e delle sue Risorse, Università della Tuscia, v. San Camillo de Lellis snc, 01100 Viterbo (Italy)
(2)
G Chirici
Dipartimento di Scienze e Tecnologie per l’Ambiente e il Territorio, Università del Molise, c.da Fonte Lappone snc, 86090 Pesche, IS (Italy)

Corresponding author

Citation

Corona P, Lamonaca A, Chirici G (2008). Remote sensing support for post fire forest management. iForest 1: 6-12. - doi: 10.3832/ifor0305-0010006

Paper history

Received: Oct 19, 2007
Accepted: Jan 23, 2008

First online: Feb 28, 2008
Publication Date: Feb 28, 2008
Publication Time: 1.20 months

Breakdown by View Type

(Waiting for server response...)

Article Usage

Total Article Views: 32310
(from publication date up to now)

Breakdown by View Type
HTML Page Views: 26639
Abstract Page Views: 724
PDF Downloads: 4534
Citation/Reference Downloads: 98
XML Downloads: 315

Web Metrics
Days since publication: 4275
Overall contacts: 32310
Avg. contacts per week: 52.91

Article Citations

Article citations are based on data periodically collected from the Clarivate Web of Science web site
(last update: Aug 2019)

Total number of cites (since 2008): 17
Average cites per year: 1.42

 

Publication Metrics

by Dimensions ©

Articles citing this article

List of the papers citing this article based on CrossRef Cited-by.

 
(1)
Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004)
Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry & Remote Sensing 58: 239-258.
CrossRef | Gscholar
(2)
Bottai L, Bagnoli M, Oradini A, Carnemolla S (2000)
Satellite based monitoring of Tuscany wildfires. In: Remote sensing and forest monitoring (Zawila-Niedzwiecki T, Brach M eds), Office for Official Pubblications of the European Communities. European Commission, Luxembourg, Environment and quality of life series XII: 573-583.
Gscholar
(3)
Carlini M, Valentini R, Belli C, Capitoni B, Papale D (2006)
Progetto SIMIB: mappe degli incendi e valutazione dei danni da oggi a portata di mouse. Silvae 5: 73-98.
Gscholar
(4)
Chirici G, Corona P, Dellisanti R, Di Giovine M, Marchetti M, Rossini P, Travaglini D (2001)
Confronto e integrazione di dati telerilevati Ikonos e Landsat 7 ETM+ nella valutazione dei danni da incendio in ambiente mediterraneo: il caso della pineta di Castel Fusano. In: Atti, Conferenza ASITA, La qualità nell’informazione geografica, Rimini, volume I, pp. 529-537.
Gscholar
(5)
Chirici G, Corona P (2005)
An overview of passive remote sensing for post-fire monitoring. Forest@ 2 (3): 282-289.
Online | Gscholar
(6)
Chirici G, Corona P (2006)
Utilizzo di immagini satellitari ad alta risoluzone nel rilevamento delle risorse forestali. Aracne Editrice, Roma, Italy.
Gscholar
(7)
Chirici G, Marchetti M, Mattioli W, Ottaviano M, Lamonaca A, Corona P (2006)
Confronto di approcci correlativi per il monitoraggio satellitare del recupero post-incendio della vegetazione forestale. Atti della 10° Conferenza Nazionale ASITA, Bolzano, 14-17 novembre 2006, pp. 685-690.
Gscholar
(8)
Corona P, Saracino A, Leone V (1998)
Plot size and shape for the early assessment of post-fire regeneration in Aleppo pine stands. New Forests 16: 213-220.
CrossRef | Gscholar
(9)
Csiszar I, Denis L, Giglio L, Justice CO, Hewson J (2005)
Global fire activity from two years of MODIS data. International Journal of Wildland Fire 14: 117-130.
CrossRef | Gscholar
(10)
Davis MA, Curran C, Tietmeyer A, Miller A (2005)
Dynamic tree aggregation patterns in a species-poor temperate woodland disturbed by fire. Journal of Vegetation Science 16: 167-174.
CrossRef | Gscholar
(11)
De Matteo E, Colombo R, Meroni M, Comini B, Fracassi G, Cavini L, Olivieri M, Deligios G (2007)
Delimitazione di aree boschive montane percorse dal fuoco mediante immagini satellitari ad alta risoluzione geometrica. Forest@ 4 (3): 264-271.
Online | Gscholar
(12)
Diaz-Delgado R, Lloret F, Pons X (2003)
Influence of fire severity on plant regeneration by means of remote sensing imagery. International Journal of Remote Sensing 24: 1751-1763.
CrossRef | Gscholar
(13)
EC (2006)
Forest Fires in Europe 2005. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Report No 6, EUR 22312 EN, Italy.
Gscholar
(14)
Eva H, Lambin EF (1998)
Burnt area mapping in Central Africa using ATSR data. International Journal of Remote Sensing 19: 3473-3497.
CrossRef | Gscholar
(15)
Franklin SE (2001)
Remote sensing for sustainable forest management. CRC Press, Boca Raton, USA.
Gscholar
(16)
Gitas I, Mitri G, Ventura G (2004)
Object-oriented image analysis for burned area mapping using NOAA-AVHRR imagery in Creus Cape, Spain. Remote Sensing of Environment 92: 409-413.
CrossRef | Gscholar
(17)
Grasso E, Molinari P, Mandatori R (2004)
Il catasto degli incendi boschivi della Regione Campania: un sistema su WEB per l’applicazione della Legge Quadro 353/2000. MondoGIS 44: 31-34.
Gscholar
(18)
Henry MC, Hope AS (1998)
Monitoring post-burn recovery of chaparral vegetation in southern California using multi-temporal satellite data. International Journal of Remote Sensing 19: 3097-3107.
CrossRef | Gscholar
(19)
Holden ZA, Smith AMS, Morgan P, Rollins MG, Gessler PE (2005)
Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. International Journal of Remote Sensing 26: 4801-4808.
CrossRef | Gscholar
(20)
Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE, Benson NC (2006)
Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15: 319-345.
CrossRef | Gscholar
(21)
Lillesand TM, Kiefer RW, Chipman JW (2004)
Remote Sensing and Image Interpretation. Fifth Edition. John Wiley & Sons, USA.
Gscholar
(22)
McHugh C, Kolb TE (2003)
Ponderosa pine mortality following fire in northern Arizona. International Journal of Wildland Fire 12: 7-22.
CrossRef | Gscholar
(23)
Mitri GH, Gitas IZ (2004)
A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery. International Journal of Wildland Fire 13: 367-376.
CrossRef | Gscholar
(24)
Mitri GH, Gitas IZ (2006)
Fire type mapping using object-based classification of Ikonos imagery. International Journal of Wildland Fire 15: 457-462.
CrossRef | Gscholar
(25)
Moya D, Espelta JM, Verkaik I, Lopez-Serrano F, de las Heras J (2007)
Tree density and site quality influence on Pinus halepensis Mill. reproductive characteristics after large fires. Annals of Forest Science 64: 649-656.
CrossRef | Gscholar
(26)
Oertel D, Briess K, Halle W, Neidhardt M, Lorenz E, Sandau R, Schrandt F, Skrbek W, Venus H, Walter I, Zender B, Zhukov B, Goldhammer JG, Held AC, Hille M, Brueggemann H (2003)
Airborne forest fire mapping with an adaptive infrared sensor. International Journal of Remote Sensing 24 (18): 3663-3682.
CrossRef | Gscholar
(27)
Raftoyannis Y, Spanos I (2005)
Evaluation of log and branch barriers as post-fire rehabilitation treatments in a Mediterranean pine forest in Greece. International Journal of Wildland Fire 14: 183-188.
CrossRef | Gscholar
(28)
Smith AMS, Wooster MJ, Powell AK, Usher D (2002)
Texture-based feature extraction: application to burn scar detection in Earth Observation satellite imagery. International Journal of Remote Sensing 23: 1733-1739.
CrossRef | Gscholar
(29)
Stroppiana D, Gregoire J-M, Pereira JMC (2003)
The use of SPOT VEGETATION data in a classification tree approach for burnt area mapping in Australian savana. International Journal of Remote Sensing 24 (10): 2131-2151.
CrossRef | Gscholar
(30)
Turner MG, Romme WH, Gardner RH, Hargrove WW (1997)
Effects of fire size and pattern on early succession in Yellowstone National Park. Ecological Monographs 67: 411-433.
Gscholar
(31)
Wang J, Rich PM, Price KP, Kettle WD (2004)
Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing 25 (16): 3127-3138.
CrossRef | Gscholar
(32)
Wulder MA, Franklin SE (2003)
Remote Sensing of Forest Environments: Concepts and Case Studies. Kluwer, Dordrecht, Netherlands.
Gscholar
 

This website uses cookies to ensure you get the best experience on our website